学科分类
/ 1
9 个结果
  • 简介:应用数学与力学经常使用参数摄动近似.在物理与力学中有大量保守体系的分析.保守体系的特点是保辛.本文指出参数摄动法保辛的问题应予考虑.位移法摄动是保辛的,而辛矩阵的加法摄动则未能保辛.数值例题给出了对比.

  • 标签: 小参数摄动法 应用数学 位移法 辛矩阵 力学 近似
  • 简介:为了满足空间探测任务的要求,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠性伸杆的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠性附件振动的复杂性及其对航天器本体的耦合影响,采用最优指令整形抑制挠性伸杆的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠性伸杆的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此卫星的姿态控制精度.

  • 标签: 挠性伸杆 最优指令整形 自适应扰动抑制滤波器 复合振动控制
  • 简介:表达二维不可压缩流动的流速分量与流函数关系的微分方程组是典型的具有一个自由度的哈密顿系统.将流函数用Taylor级数展开,应用非线性系统动力学方法对流型及其分岔进行了分析.对退化临界点,基于流动平面的参数正则变换,导出了流函数的正形表达式和简化的微分方程,并对简化系统的一般特性进行了分析.

  • 标签: 哈密顿系统 正则变换 临界点 分岔
  • 简介:在状态空间下,将线性陀螺系统振动问题导向哈密顿体系,可以得到一组加权共轭辛正交关系和模态展开定理.利用这种特点构造了陀螺系统模态摄动计算式与灵敏度计算式,从而解决了拉格朗日体系下陀螺系统模态摄动分析与灵敏度计算的困难,算例显示了文中计算方法的有效性.

  • 标签: 陀螺系统 模态摄动分析 灵敏度计算 惯性动力系统 哈密尔顿体系 微振动
  • 简介:在外弹道数据处理中,奇异点处理、特征点求取与随机误差削弱都是精度估计的关键环节.本文首先利用波变换在处理奇异点、特征点、噪声消除方面的优势,对观测数据进行基于波变换的分解、融合、重构处理,剔除奇异点,查找特征点,削弱随机误差.其次利用节点自由分布B样条描述导弹运动轨迹,使该弹道确定方法转化为关于求解导弹轨道样条表示参数和测量系统误差的多模融合的非线性优化问题,采用非线性最优化方法,进而得到待估参数的最优估计,完成弹道的最佳逼近.仿真结果表明,该技术应用在奇异点处理、特征点提取与随机误差削弱方面效果较好,多模融合算法能减少计算量,且能切实提高参数估计精度.

  • 标签: 小波变换 样条分频 信息重构 数据融合
  • 简介:针对我国某一型号大型卫星液体燃料Cassini贮箱(腰为圆柱,两底为半球),应用有限元方法研究了重环境下液体的小幅晃动问题和横向受迫晃动问题,采用Galerkin方法得到了系统的有限元离散方程;得到了晃动固有频率和等效力学模型参数.针对周期脉冲激励,推导了液体作用于贮箱壁的晃动力和晃动力矩计算公式并给出了数值计算结果和分析结论.

  • 标签: 微重力 液体晃动 等效力学模型 有限元 周期脉冲激励
  • 简介:Leland模型是在考虑交易费用的情况下,对Black—Scholes模型进行修改得到的非线性期权定价模型.本文针对Leland模型,提出了一种求解非线性动力学模型的自适应多尺度波同伦摄动法.该方法首先利用插值波理论构造了用于逼近连续函数的多尺度波插值算子,利用该算子可以将非线性期权定价模型方程自适应离散为非线性常微分方程组;然后将用于求解非线性常微分方程组的同伦摄动技术和波变换的动态过程相结合,构造了求解Leland模型的自适应数值求解方法.数值模拟结果验证了该方法在数值精度和计算效率方面的优越性.

  • 标签: Leland模型 插值小波算子 同伦摄动技术
  • 简介:在考虑温度对圆柱壳材料性能影响的基础上,建立了圆柱壳在扰动外压作用下的几何非线性动力控制方程.并采用伽辽金原理及Melnikov法研究了圆柱壳在热载荷及扰外压作用下的分岔,进一步讨论分析了温度、Batdorf参数等因素对圆柱壳发生混沌运动区域的影响,得出了随温度、Batdorf参数的增大,混沌运动区域将越来越大的结论.

  • 标签: 圆柱壳 热载荷 分岔 混沌
  • 简介:对直流和混沌电流激励下的Hodgkin—Huxley(H—H)神经元,将周期的扰动信号分别作用于神经元的不同离子通道,控制神经元放电行为.数值结果表明:作用于不同离子通道的扰动控制信号,引起完全不同的神经元放电行为;如这些扰动信号可以使神经元从周期性放电转变为抛物线型簇放电、从混沌放电转变为周期放电。

  • 标签: 周期 微扰动 神经元 放电行为 控制信号 混沌电流