学科分类
/ 1
18 个结果
  • 简介:设M是复流形,具有(α,β)度量F=αφ(|β|/α),其中α为M上的Hermite度量,β为M上的(1,0)形式。本文得到与F相联系的非线性联络系数Гiμ^i的表达式,且证明了:若β为M上的全纯(1,0)形式,并且关于α的Hermite联络γij^k(z)平行,则F是M上的Berwald度量;若α是M上的Kaihler度量,则F是M上的强KahlerFinsler度量.

  • 标签: 复(α β)度量 复Berwald度量 强Kaihler FINSLER度量
  • 简介:对于线性对流占优扩散方程,采用特征线有限元方法离散时间导数项和对流项,用分片线性有限元离散空间扩散项,并给出了一致的后误差估计,其中估计常数不依赖与扩散项系数。

  • 标签: 后验误差估计 对流占优 特征线方法
  • 简介:针对线性回归模型Y=Xβ+l的典则形式Y=a01+Z+l,l-(0,σ^2I)在设计阵X呈病态时,提出了一类新估计(k;q)=(OkIq+Aw^A1O)^-1Z'Y,称之为广义岭型估计.优点是结合主成分估计和岭估计的思想和方法,将X'X的特征值分为不同大小属性的两部分A1与A2,并分别添加不同的常数,致使新估计类的均方误差大幅降低的同时计算量大大减少,而且便于对原变量做出解释.文中进一步讨论了该估计优于岭估计的k的存在性以及充分条件.

  • 标签: 典则形式 岭估计 主成分估计 广义岭型估计
  • 简介:研究了在单位开圆盘内单叶解析且规范化的系数函数族gφ1,φ2,φ3,φ4(m1,m2,m3,m4;λ)的一些性质,给出了其子族gφ1,φ2,φ3,φ4(m1,m2,m3,m4;λ)在内闭一致收敛拓扑下的极值点和支撑点,并讨论解决了gφ1,φ2,φ3,φ4(m1,m2,m3,m4;λ)与凸函数相关的一些半径问题,推广了近来的一些研究结果.

  • 标签: 解析函数 凸函数 内闭一致收敛拓扑 线性泛函 支撑点
  • 简介:本文利用K-泛函、加权连续模与极大函数等工具,借助不等式技巧,在Orlicz空间内研究了系数多项式的倒数逼近问题,得到了收敛速度估计的结果.

  • 标签: ORLICZ空间 加权连续模 逼近 多项式
  • 简介:一、含有多值函数的等式在变函数教学中,我们经常遇到一些含有多值函数的等式。初学者对这些等式有时感到难于理解,因而在证明和计算中引起混乱。下面就其中经常出现的几个问题进行一下分析。

  • 标签: 复变函数 多值函数 调和函数 单值分支 辐角 解析函数
  • 简介:本文引入了偶数维欧氏空间的结构及Witt基,在此基础上讨论了偶数维Clifford代数中的Dirac旋量空间.由Fock空间的结果我们得到了Dirac旋量空间视为Clifford代数中极小左理想,最后我们研究了Dirac旋量空间的对偶空间.

  • 标签: 复Clifford代数 Dirac旋量空间 γ-矩阵 FOCK空间
  • 简介:讨论Curto-Fialkow所给出的四阶截断矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.

  • 标签: 四阶非奇异截断复矩问题 表示测度 平坦延拓 矩量矩阵 BOREL测度
  • 简介:延迟微分方程在科学与工程等多个领域中有着广泛应用.本文考虑延迟抛物型方程的时间逼近.首先证明延迟抛物型方程二阶变步长BDF方法的稳定性,进而通过重构获得更高阶的数值逼近,由此获得二阶变步长BDF方法的后误差估计.

  • 标签: 延迟微分方程 稳定性 重构 后验误差估计 BDF方法
  • 简介:指出四元数阵重行列式可用阵行列式来表示,于是,阵的伴随矩阵、求逆阵公式、秩的下界等,都可相应地推广到四元数阵。

  • 标签: 行列式 四元数 伴随矩阵 逆阵 下界 表示
  • 简介:本文给出微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.

  • 标签: weyl型分数阶积分 复微分方程 α-形式解