学科分类
/ 2
26 个结果
  • 简介:介绍和研究了实q-一致光滑Banach空间中一类新的具(A,η)一增生算子的广义混合拟一似变分包含组,利用(A,η)一增生算子的预解算子技巧,证明了解的存在性及由新的P步迭代算法所生成序列的收敛性.

  • 标签: 变分包含组 (A η)-增生算子 预解算子 迭代算法 收敛性
  • 简介:研究两参数的二阶常微分方程Cauchy问题解的多重层性质,根据不同层次引用不同的伸长变量,分别构造了具有不同量级的边界层校正项,从而证得关于解的一致有效的渐近展开式和有关的余项估计.

  • 标签: 双参数 CAUCHY问题 多重层性质
  • 简介:在Banach空间中利用上下解方法与不连续增算子不动点定理,研究了间断项和右端函数具有一阶导数项的二阶非线性常微分方程周期边值问题的最大解、最小解的存在性,推广和改进了现有的结果.而且对于有限维空间,我们获得的这些结果也都是新的.

  • 标签: BANACH空间 周期边值问题 上下解 增算子不动点定理
  • 简介:利用非线性增生映射值域的扰动定理,研究了非线性椭圆边值问题(@)在Ls(Ω),p≤s<+∞中解的存在性.(@){-△pu+g(x,u)=fa.e.在Ω中-∈βr(u(x))a.e.在Γ上其中f∈Ls(Ω),p≤s<+∞给定,ΩRN为有界锥形区域,△pμ=div(|u|p-2u)为P拉普拉斯算子.max(N,2)≤p<+∞,v为Γ的外法向导数,g:Ω×R→R满足Caratheodory条件,对x∈Γ,βx是正常、凸、下半连续函数φx=φ(x,@)的次微分.其中φ:Γ×R→R.本文推广了魏利和何震所讨论的非线性问题的边值条件.

  • 标签: 增生映射 半连续映射 非线性椭圆边值问题
  • 简介:考虑分布时滞的退化中立型系统的鲁棒稳定性.利用算子Ω的稳定性和线性矩阵不等式得到一个新的鲁棒稳定性判据,本判据将中立型时滞、时变离散时滞、时变分布时滞和退化中立型系统一起考虑,相比已有文献具有较低的保守性.利用Matlab可以验证本判据的有效性.

  • 标签: 退化中立型系统 分布时滞:线性矩阵不等式 积分不等式 稳定性