简介:用构造法研究了路和圈的Mycielski图的点可区别均匀边染色,得到了路和圈的Mycielski图的点可区别均匀边色数,验证了它们满足点可区别均匀边染色猜想(VDEECC).
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.
简介:从量化的角度,引入了风险和违约等信用概念的数学描述。应用概率论、随机过程和微分方程的数学工具,讨论了金融和信用风险的数学模型以及应用。
简介:当上市银行的长期负债系数γ的取值不同时,应用KMV模型测算出的银行违约概率大相径庭。根据债券的实际信用利差可以推算出上市银行的违约概率PDi,CS,根据长期负债系数γ可以运用KMV模型确定上市银行的理论违约概率PDi,KMV。本文通过理论违约率与实际违约率的总体差异^n∑i=1|PDi,KMV-PDi,cs|最小的思路建立规划模型,确定了KMV模型的最优长期负债γ系数;通过最优长期负债系数γ建立了未发债上市银行的违约率测算模型、并实证测算了我国14家全部上市银行的违约概率。本文的创新与特色一是采用KMV模型计算的银行违约概率PDi,KMV与实际信用利差确定的银行违约概率PDi,CS总体差异^n∑i=1|PDi,KMV-PDi,cs|最小的思路建立规划模型,确定了KMV模型中的最优长期负债γ系数;使γ系数的确定符合资本市场利差的实际状况,解决了现有研究中在0和1之间当采用不同的长期负债系数γ、其违约概率的计算结果截然不同的问题。二是实证研究表明,当长期负债系数γ=0.7654时,应用KMV模型测算出的我国上市银行违约概率与我国债券市场所接受的上市银行违约概率最为接近。三是实证研究表明国有上市银行违约概率最低,区域性的上市银行违约概率较高,其他上市银行的违约概率居中。
简介:阿魏酸是一种有效的天然油脂抗氧化剂.采用密度泛函理论(DFT)B3LYP方法和从头算HF两种方法,在6-311++G**基组水平上对阿魏酸分子的几何结构进行全优化,得到其几何结构参数,进一步计算得到阿魏酸的红外和拉曼振动光谱.计算结果表明,采用B3LYP和HF2种方法优化得到的几何结构及频率值是一致的,对在B3LYP方法下计算得到的红外和拉曼振动频率进行合理的理论归属并与SDBS数据库实验数据进行比较,发现计算得到的红外和拉曼振动频率与实验测定结果符合较好.阿魏酸分子结构和振动光谱的研究,为研究阿魏酸及其衍生物的化学结构与生理活性之间的构效关系提供依据.