简介:EQrot1nonconformingfiniteelementapproximationtoaclassofnonlineardualphaselaggingheatconductionequationsisdiscussedforsemi-discreteandfully-discreteschemes.Byuseofaspecialproperty,thatis,theconsistencyerrorofthiselementisoforderO(h2)oneorderhigherthanitsinterpolationerrorO(h),thesupercloseresultsoforderO(h2)inbrokenH1-normareobtained.Atthesametime,theglobalsuperconvergenceinbrokenH1-normisdeducedbyinterpolationpostprocessingtechnique.Moreover,theextrapolationresultwithorderO(h4)isderivedbyconstructinganewinterpolationpostprocessingoperatorandextrapolationschemebasedontheknownasymptoticexpansionformulasofEQrot1element.Finally,optimalerrorestimateisgainedforaproposedfully-discreteschemebydifferentapproachesfromthepreviousliterature.
简介:Inthispaper,themodifiedextendedtanhmethodisusedtoconstructmoregeneralexactsolutionsofa(2+1)-dimensionalnonlinearSchr¨odingerequation.WiththeaidofMapleandMatlabsoftware,weobtainexactexplicitkinkwavesolutions,peakonwavesolutions,periodicwavesolutionsandtheir3Dimages.
简介:相对增益阵列(RGA)大多数应用的矩阵阶数都是较小的(n=2,3或4).我们从矩阵方程Φ(A)=1/2J2的实数解出发,应用矩阵方程Φ(A)=1/nJn的实数解在G-等价下的不变性和实数解的分块构造法,研究了Φ(A)=1/4J4的实数解的一些问题.
简介:这份报纸的主要目的是为所谓的1集合为非线性的操作符方程F(x)=x(1)证明许多新固定的点定理和存在定理弱有收缩力的在Banach空格的无界的域上的操作符。我们也在起源介绍弱关上半的操作员的概念并且为操作员的如此的班为非线性的操作员方程F(x)=x(1)获得一系列新固定的点定理和存在定理。作为后果,主要结果概括并且改进相关结果,它被ORegan和A·本·阿马和M获得。在1998和2009的Mnif分别地。另外,我们得到Leray-Schauder,Altman,Petryshyn和Rothe的定理在情况中打的著名的固定的点弱顺序连续,1集合弱有收缩力(????湡捡???????????猠'T灳捡??ü
简介:<正>Inthefifties.Calderonestablishedaformalrelationbetweensvmbolandkerneldistribu-tion,butitisdifficulttoestablishanintrinsicrelation.TheCalderon-Zygmund(C-Z)schoolstudiedrheC-Zoperators,andHormander.KohnandNirenberg,etal.studiedthesymbolicoperators.HereweapplyarefinementoftheLittlewood-Paley(L-P)decomposition,analyseundernewwaveletbases.tocharacterizebothsymbolicoperatorsspacesOpS1,δmandkerneldistributionsspaceswithotherspacescomposedofsomeahnostdiagonalmatrices.thengetanisometricbetweenOpS1,δmandkerneldistri-butionspaces
简介:对[0,1]上的L—可积函数ф及α>0定义下列B—D—B算子;本文研究了Mna(ф,x)当α>0时,在LP(0,1](1≤p<+∞)的一致逼近;当α≥1时在LP[O,1]及L1P[0,1]逼近度的量化估计。作者在文[4]中定义了B—D—B算子:其中fnk(X)称为Bézeief基函数文[4]研究的是B—D—B称子在C[0,1]空间中的逼近性质,本文继续[4]的工作,专研究这个算子在LP[0,1](1≤P<+∞)的逼近性质,证明了Mna(фX)当α>0时在LP[0,1]中为一致逼近,并得到了当α≥1时在LP[0,1]及L1P[0,1]中逼近度的量化估计。