学科分类
/ 23
447 个结果
  • 简介:一、非经常性损益信息重要(一)统计数据概况本文利用Wind资讯系统对截至2017年6月30日的3,359家A股上市公司披露的2016年报相关数据进行了统计,以下数据来源均同此。经统计,3,359家上市公司中,有313家公司2016年度非经常性损益为负,占全部上市公司总数的9.32%;有3046家为正,占全部数量比重高达

  • 标签: 非经常性损益 上市公司 公司业绩 披露现状
  • 简介:确立了某类分块矩阵[M(11)M12XM21YM23ZM32M33]的最大秩公式,其中,X,Y和Z是三个受限于四元数线性矩阵方程A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2的变量矩阵.作为该公式的一项应用,我们推导出上述矩阵方程解集等同于某类四元数三次矩阵方程组A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2,XYZ=J解集的条件.

  • 标签: 四元数域 分块矩阵 线性矩阵方程 最大秩 三次矩阵方程 解集
  • 简介:关于凸函数局部有上界和函数Lipschitz连续的等价已经被多次研究过,但是这些研究都未曾涉及凸函数的Lipschitz连续与函数有下界的关系.本文利用Hamel基构造了一个反例,说明了即使凸函数在全空间有下界也不能得到函数的Lipschitz连续.接着,在空间完备的情形下,运用Baire纲理论证明了,函数在某一球型邻域内均下半连续等价于函数的Lipschitz连续.

  • 标签: 赋范空间 凸泛函 局部有下界 LIPSCHITZ连续
  • 简介:受非线性增生映射值域的扰动定理的启发,研究了非线性边值问题(@)在L^p(Ω),1<p<+∞中解的存在。(@){-∑^Ni,j=1σ/σxi(ai,jσu/σxj)+∑^Ni=1bσu/σxi+g(x,u)=fa.e.inΩ,-σu/σna∈βx(u(x))a.e.onΓ其中f∈L^p(Ω),1<p<+∞给定,g:Ω×R→满足Caratheodory条件。本文把Gupta和Hass所研究的非线性方程加以推广,即在方程中增加了∑^Ni=1bσu/σxi这一项,并把解的存在的讨论由L^2(Ω)空间推广到L^p(Ω),1<p<+∞空间中。

  • 标签: 增生映射 非线性方程 椭圆边值问题 存在性
  • 简介:针对现有灰色预测模型主要以一阶累加生成序列作为建模序列,再累减还原为原始序列预测值,本文通过Gamma函数将累加生成算子和累减生成算子拓展到正实数领域,给出分数阶累加生成算子和分数阶累减生成算子的解析表达式,一阶和整数阶均是其特例,证明了两算子之间的互逆.为建立分数阶灰色预测模型和拓宽灰色预测模型的应用范围提供理论基础.

  • 标签: 灰色系统理论 分数阶 累加生成算子 累减生成算子
  • 简介:本文采用代数运算方法研究了一类五次系统的中心一焦点判定问题,给出了系统的13个基本如不变量,得到了直接用系统的系数表示的奇点量公式与可积条件。

  • 标签: 五次系统 奇点量 可积性条件
  • 简介:<正>以0,1为元素所构成的n阶方阵A=(aij)n×n,i,j=0,1,2,…n-1,其元素之间的加法与乘法运算按下列方式:则称A为布尔矩阵,文[1],[2]对这类矩阵的性质作了深入的研究和全面的介绍,文[4][5]给出了经典循环矩阵可约和本原性的条件,本文给出了另一类循环布尔矩阵的可约和本原性的充分必要条件。设g是一个非负整数,一个n阶g-循环矩阵A=(aij)n×n是一个这样的矩阵,除

  • 标签: 布尔矩阵 可约性 本原性 循环矩阵 乘法运算 充分必要条件
  • 简介:群G的子群H称为半置换的,若对任意的K≤G,只要(|H|,|K|)=1,就有HK=KH.H称为s-半置换的,若对任意的p||G|,只要(p,|H|)=1,就有PH=HP,其中P∈Sylp(G).本文研究Sylow子群的极大子群及极小子群的s-半置换对有限群的p-超可解的影响.

  • 标签: S-半置换子群 极大子群 极小子群 P-超可解群
  • 简介:文[6]讨论了比已有结果更弱的假设条件下,固定时刻一阶脉冲微分系统与Kurzweil广义常微.分方程的关系,本文在此基础之上,建立了此类脉冲微分系统有界变差解对参数的连续依赖定理.

  • 标签: 脉冲微分系统 有界变差解 连续依赖性
  • 简介:在2-一致光滑的Banach空间中,引入一种新的迭代算法研究非膨胀映象的不动点集与α-逆强增生算子的变分不等式解集的公共元素,并获得了迭代算法的强收敛定理.而且应用这些结果考虑了非膨胀映象和严格伪压缩映象公共不动点的收敛性问题.

  • 标签: 变分不等式 非膨胀映象 α-逆强增生算子 2-致光滑 严格伪压缩映象
  • 简介:考虑线性模型Y=Xβ+ε,Y是可观察的n维向量,ε和β是不可观察的n维和p维随机向量;E(β)=Aα,VAR(β)=σ2△≥0;E(ε)=0,VAR(ε)=σ2V≥0;E(εβ')=0;X,A,△,V皆为已知矩阵;α∈Rk,σ>0皆为未知参数,本文首次提出矩阵损失函数,并给出了(Sα,Qβ)的估计(L1Y+α,L2Y+b)在非齐次估计类中可容许的充要条件。

  • 标签: 随机回归系数 可容许性 非齐次 矩阵损失函数 充要条件 可容许估计