学科分类
/ 7
136 个结果
  • 简介:复习目标了解有关方程、方程的概念;能正确、熟练地解一元一次方程、一次方程和一元二次方程;掌握分式方程的解法并会验根;掌握由一个二元一次方程和一个二元二次方程组成的方程的解法;掌握一元二次方程根的判别式及应用;能正确列出方程或方程解应用题.

  • 标签: 方程 方程组 不等式 不等式组 中考 数学
  • 简介:(满分100分,90分钟完成)(/1)基础知识达标检测一、选择题(每小题4分,共40分)1.(,『1+I)x?+r,“一2+,『ii=0是关于r的一元二次方程,邶幺m的值是().({)r,j>一1(B),n>1(C)口‘≠一1(D),H≠02.方程x::x的根是().(1)()(B)l(c)2(D)0或13F列方程中,没有实数根的是().(4)!Y:一7x=0(B)5J!一7J+5=0t、C)!r?+3r一4=0(D)16,+9y=244.,f、等式Ⅲf。。’‘)’0的整数僻的个数足().L2x<5l{)1个(B)!个((j)3个(D)4个5.一啦!

  • 标签: 达标检测 不等式 实数根 二次方 换元法 不等式组
  • 简介:继[1~3]分别给出σ-根及其半类的两个特征性质,研究了对于已知环类M,含于M的最大σ-根及σ-半类和包含M的最小σ-半类的构造,同时得到σ-半闭包σ-遗传的一个充分条件。

  • 标签: Σ-根 σ-半单类 结合环 余可归纳性
  • 简介:本文用则模的术语给出了半Artin环的刻划。得到如下三个条件的等价性:(1)R是一个半Artin环;(2)每一个R-模都是正则模;(3)每一个单纯R-模都是正则模。

  • 标签: 正则模 半单 ARTIN
  • 简介:对于单位圆盘内的解析函数f(z)=z+^∞∑(k=2)akz^k,本文根据D^nf(z)/z给出了判别函数f(z)为叶函数的几条判别法则,其中D^0f(z)=f(z),D^1f(z)=Df(z)=zf′(z),D^nf(z)=D(D^(n-1)f(z)),n∈N.

  • 标签: 单叶函数 判别法 单位圆盘 解析函数 判别函数 法则
  • 简介:设Sλ*(α,β)表示函数类在单位圆u{z;|z|<1}内解析映象,且对0<λ≤1;0≤α≤(1+λ)/2;0<β≤1;满足设Cλ*(α,β)表示函数类在U内解析,且zf′(z)属于Sλ*(α,β)。当λ=1时,为函数类S1*(α,β)和C1*(α,β).文中给出了这两类函数的一些结果,本文就

  • 标签: 单叶函数 函数类 单位圆 类函数 文中 工科数学
  • 简介:设D为有限线性空间,且TGAut(T),其中T是非交换群,并且同构于^2B2(g),Cn(g)(n≥3),^3D4(g),E7(q),E8(q),F4(q),^2F4(q),G2(q),^2G2(q)。假设D不是射影平面,G线传递作用在D上,则T点传递。

  • 标签: 几乎单群 传递 射影平面 数学理论
  • 简介:令u(n)表示具有n个顶点的圈图.在一个圈C3的一个顶点上悬挂n-3个悬挂边的n个顶点的圈图记为U~*(n-3,0,0).本文证明了在u(n)中具有最小hyper-Wiener指数的圈图是U~*(n-3,0,0).

  • 标签: 单圈图 Hyper-Wiener指标 WIENER指标
  • 简介:讨论了线性方程正解的若干性质,给出了线性方程有正解的一个充要条件,以及由此得到的求正解的一般方法,还介绍了正解问题的若干应用.

  • 标签: 减列方程组 极小方程组 线性方程组的正解
  • 简介:设H是特征为零的代数闭域k上的半Hopf代数.本文证明了如果dimkH是小于351的奇数,则H是Frobenius型Hopf代数.

  • 标签: 半单HOPF代数 特征标 Frobenius型.
  • 简介:微生物学大数据在生态环境、人类健康和疾病研究方面都起到了重要作用。通过数学、统计等数据挖掘方法,从高维复杂数据中提取有用信息,是微生物学大数据建模和分析的关键问题。本文分析了微生物学大数据的特点,对当前数据分析和计算研究中存在的热点和难点进行了探讨分析,并综述了当前微生物学大数据模式挖掘、网络重建与分析的研究概况。

  • 标签: 微生物组 大数据 数据挖掘 微生物交互 代谢网络
  • 简介:本文给出了一个判定最大无关的充要性定理及其证明.同时对用矩阵的行变换求最大无关这一问题进行了点滴分析并介绍了一个解齐次线性方程的简便方法。

  • 标签: 初等行变换 最大无关组
  • 简介:态射的Moore-Penrose逆是矩阵的Moore-Penrose逆在有对合*的范畴中的推广.本文着重给出具有满泛分解态射f的(1,3.4)-逆和Moore-Penrose存在的充要条件,同时也推广了具有泛分解广义逆的相应结果.

  • 标签: 态射 MOORE-PENROSE逆 对合 泛分解态射 广义逆 充要条件
  • 简介:解一次方程的思想是消元,消元后转化为一元一次方程.但还要注意仔细观察,认真分析题目的特征、巧妙、灵活地运用消元法来解题.例1 解方程(1)2x+y-z=2,x+2y+3z=13,-3x+y-2z=-11; ①②③(2)x+2y-3z=-4,4x+8y+9z=5,2x+6y-9z=-15. ①②③分析 上面两题若逐步消元,都比较麻烦.仔细观察,发现方程(1)三式相加可得y;而方程(2)呢,可先整体消元求出x和z,于是得妙解.(1)解 由①+②+③得4y=4,即y=1.把y=1代入①、②,得2x-z=1x+3z=11.解之得原方程的解为x=2,y=1,z=3.(2)解 由②-①×4,得2

  • 标签: 一次方程组 方程组的解 巧解 旅游团 数学竞赛试题 整体消元