简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:研究可分Banach空间中一类混合型的微分—积分包含,证明了解的存在性,其单值情形改进和推广了文[1~3]中关于混合型微分—积分方程的若干存在性结果。
简介:研究了Banach空间中非线性混合型微分-积分方程初值问题u'=f(t,u,Tu,Su),u(0)=x0的整体解,完全没有要求f的任何增性,利用Monch不动点定理和比较结果得到了初值问题整体解的存在性和唯一解,并且给出了一致收敛于唯一解的迭代序列,改进推广和统一了已有的许多结果.
简介:用单调迭代的方法和一些新的比较结果,研究了Banach空间中一类事型非线性微分-积分方程的最大最小解,我们用空间E的弱完备性和锥P的正规性(这时可推出P是正则的)来代替紧性条件。
简介:本文提出一个新的预条件子,用共轭梯度法求解对称正定的Teoplitz型线性方程组.该预处理子构造简单,易于实施快速傅里叶变换.理论和数值实验显示,我们的预处理子与T.Chan预处理子收敛性相近.
简介:主要研究ψ-混合随机变量序列部分和的强大数定律,并且得到了一些新结果.在混合系数满足一定条件时,本文的结果推广了独立序列的相应结果.