简介:主要介绍一种基于Modelica语言的泵车臂架系统多领域耦合动力学仿真建模方法.泵车臂架系统是典型的机械、液压、控制等多领域耦合系统,在其频繁的启动、制动过程中,变幅机构和液压元件均承受着强烈的冲击和振动.传统的单一领域动力学建模方法很难全面反映泵车臂架系统的整体动力学性能,然而通过几种仿真工具进行联合仿真的方法亦难免存在建模效率、仿真速度等方面的问题.针对以上不足,以某型泵车为研究对象,提供一种基于多领域统一建模语言Modelica的机械、液压及控制等多场耦合的泵车臂架系统动力学建模方法,并对其工作过程进行了动态仿真.该模型具有模块化、层次化、规范化和参数化,以及仿真模型互操作性和重用性强的特点.
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂性进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂性,并可定性地判断系统的性质。
简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.
简介:研究完整力学系统的Noether对称性、Lie对称性和形式不变性,以及由它们导致的Noether守恒量、Hojman守恒量和一类新型守恒量。
简介:连接界面的黏滑、摩擦行为不仅是引起结构刚度和阻尼非线性的主要原因,而且是结构无源阻尼的主要来源.Iwan模型能够较好地复现连接界面的黏滑、摩擦行为.本文采用时频域交替法(AlternatingFrequency/TimeDomainMethod,AFT)研究含Iwan非线性模型的单自由度振子系统的稳态响应.时频域交替法具有频域法求解线性系统响应的高效性和时域法判断非线性力的便捷性特点,采用离散傅里叶变换和傅里叶逆变换,在频域和时域内分别求解系统响应和对应的非线性恢复力,再反复迭代计算系统的稳态响应.将时频域交替法计算结果和中心差分法计算的结果进行对比,并研究激励幅值对系统非线性特征的影响.结果表明,时频域交替法计算的结果与中心差分计算的结果具有较好的一致性,且求解效率较高,计算耗时减少50%;随着激励幅值的增加,系统的能量耗散增加,刚度降低,固有频率降低.
简介:为研究鱼雷涡轮机转子系统的瞬态动力学特性,结合实际启动工况,采用传递矩阵法建立了转子系统的瞬态运动方程,并用Newmark-β数值积分方法进行求解,模拟分析了不同启动过程中转子的瞬态响应历程.结果显示:考虑不同函数形式的(线性、指数、分段)升速过程时,涡轮转子系统各阶临界转速没有显著差异,但共振峰值以及震荡收敛时间差别较大.其中,最符合实际工况的是分段函数形式的升速过程,该过程过二阶临界转速的共振峰值最小.本文的工作可以为鱼雷涡轮转子系统的优化设计提供参考.
简介:研究了一类具有脉冲干扰和可变时滞区间关联大系统的鲁棒指数稳定性.假设该系统的关联函数满足全局Lipschitz条件,基于矢量Lyapunov函数法和数学归纳法,给出确保该关联系统鲁棒指数稳定的充分条件.最后给出一个数值算例用以说明本文所得到结论的正确性和有效性.
简介:研究了一般非完整系统虚位移关系的不确定性问题与非线性问题,提出了本质线性非完整约束和本质非线性非完整约束的概念,证明并给出了各种虚位移定义和交换关系的合理适用范围.研究表明,在本质线性非完整系统中,各种虚位移定义和交换关系是合理的,可以在数学与力学上得到统一.然而,在本质非线性非完整系统中,已有的虚位移定义和各种交换关系会导致数学或力学上的矛盾.这些矛盾来源于对本质非线性非完整约束的物理实现不清楚.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.