简介:一、启发提问一元二次方程ax2+bx+c=0(a≠0)的求根公式的推导过程中知道实数根的个数是由方程的系数a、b、c(△=b2-4ac)决定时,当△≥0,方程有两个实数根:x1=-b+b2-4ac2a,x2=-b-b2-4ac2a,比较x1和x2式中的结构,你发现了什么?1.分母相同,为2a2.分子-b-b2+4ac与-b+b2-4ac是互为共轭根式,3.计算:x1+x2=-b+b2-4ac2a+-b-b2-4ac2a=,x1·x2=-b+b2-4ac2a·-b-b2-4ac2a=.二、读书自学 P30-P331.如果方程ax2+bx+c=0(a≠0)有两实根是x1和x2则△=b2-4ac≥0
简介:关于凸函数局部有上界和函数Lipschitz连续性的等价性已经被多次研究过,但是这些研究都未曾涉及凸函数的Lipschitz连续性与函数有下界的关系.本文利用Hamel基构造了一个反例,说明了即使凸函数在全空间有下界也不能得到函数的Lipschitz连续性.接着,在空间完备的情形下,运用Baire纲理论证明了,函数在某一球型邻域内均下半连续等价于函数的Lipschitz连续性.