学科分类
/ 1
10 个结果
  • 简介:研究了随机环境中马氏链的周期性,引入了随机环境中马氏链的正常和零常,利用状态的周期讨论了随机环境中马氏链的正常性,给出了状态正常的若干充分条件,从而推广了经典马氏链的相应结论.

  • 标签: 随机环境中的马氏链 周期 强常返 正常返 可达
  • 简介:根据联合国难民工作署和新闻报道的资料,选取难民进入欧洲的6条主要路径和11个主要的难民接收国进行难民流动研究。首先,通过分析难民接收国的人均GDP、人口数、面积和难民数,得到与其相关的难民接收能力指标和压力指标,并确定了难民流动率;然后,建立微分方程组来描述难民网络,模拟难民流动状态,该模型描述了各国难民数随时间的变化;最后,建立了难民危机指标。这些结论对于难民问题的描述和预测有一定作用。

  • 标签: 难民流动 能力和压力指标 难民流动率 微分方程组
  • 简介:1996年9月10日,《旧金山纪事报》的体育版上登载了《巨人队正式告别NL西区比赛》一文,宣布了旧金山巨人队输掉比赛的消息。当时,圣地亚哥教士队凭借80场胜利暂列西区比赛第一,旧金山巨人队只赢得了59场比赛,要想追上圣地亚哥教士队,至少还得再赢21场比赛才行。然而,根据赛程安排,巨人队只剩下20场比赛没打了,因而彻底与冠军无缘。有趣的是,报社可能没有发现,其实在两天以前,也就是1996年9月8日,巨人队就已经没有夺冠

  • 标签: 巨人队 网络流 赛程安排 纪事报 体育版 箭头方向
  • 简介:充分利用图的字典积的结构证明了以下结论:如果图G_1的每连通分支都非平凡,图G_2的阶数大于3,那么它们的字典积G_1[G_2]具有非零3-.

  • 标签: 非零整数流 字典积
  • 简介:设计了一种最少自由度的无限元方法来实现三维Stokes绕问题的求解.通过验证强制性和inf-sup条件,我们证明了相应的离散混合变分问题解的适定性,并在加权Sobolev空间中得到了误差的先验估计.数值实验结果验证了解的收敛性.

  • 标签: 无限元 外问题 Stokes绕流 bubble基
  • 简介:介绍了图模型的矩生成函数的计算及其鞍点逼近问题.给出了矩生成函数的另一种推导方法并利用Maple计算相关方程.利用矩模拟的方法进行参数估计,得到了概率密度函数、生存函数和危险函数的鞍点逼近.结果表明鞍点逼近算法能较好地捕捉实际函数曲线的动态演变,且达到了估计误差小和逼近精度高的预期目标.

  • 标签: 流图模型 矩生成函数 危险函数 鞍点逼近 矩模拟方法
  • 简介:设(M^3,90)是非紧三维Riemann流形,其Ricci曲率非负,单射半径有正的下界,且当x→∞时数量曲率R(x)→0。则以(M^3,go)为初始值的Ricci流在M^3×[0,∞)上有长期解。这推广了马和朱最近的一个结果.在高维情形我们也有相应的结果,并且我们给Chau,Tam和Yu在Ktihler情形的类似定理一个新的证明。

  • 标签: RICCI流 无局部塌缩定理 拟局域定理 渐近体积比
  • 简介:要设(Mn,go)(n奇数)是紧Riemannian流形,λ(go)〉0,这里λ(go)是算子-4△go+R(go)的第一特征值,R(go)是(Mn,go)的数量曲率.设以(Mn,go)为初值的规范化的Ricci的极大解g(t)满足|R(g(t))|≤C和λ(对某个常数C一致成立).我们证明这个解有子列收敛于一个Ricci收缩孤立子.进一步,当n=3时,条件fM|Rm(g(t))+n/2dμt≤C可去.

  • 标签: RICCI流 无局部塌缩 非奇异解