简介:1.IntroductionLetRbethecollectionofallrealnumbers,andZthecollectionofallintegers.Iff1(x)andf2(x)aretwofunctionsinL2(R),theinnerproduct
简介:Thispapercontainsadetailed,selfcontainedandmorestreamlinedproofofthel~2decouplingtheoremforhypersurfacesfromthepaperofBourgainandDemeterin2015.TheauthorshopethiswillserveasagoodwarmupforthereadersinterestedinunderstandingtheproofofVinogradov'smeanvaluetheoremfromthepaperofBourgain,DemeterandGuthin2015.
简介:MakinguseoftheZ2×Z2symmetry,wecouldstudythestructurenearmultipleS-treakingturningpoints.Inparticular,weshowthatthereexisttwokindsofsingularpointpaththroughdoubleSbreakingturningpointsandtripleSbieakingturningpoints,onetsquadraticturningporntpathandoneisquadraticpitchforkbifurcationpointpath.SomesimpleregularextendedsystemstocornputedoubleandtripleS-breakingturningpointsareproposed.Numericalexamplesarealsogreen
简介:AgraphGiscalledchromatic-choosableifitschoicenumberisequaltoitschromaticnumber,namelych(G)=χ(G).Ohba’sconjecturestatesthateverygraphGwith2χ(G)+1orfewerverticesischromaticchoosable.ItisclearthatOhba’sconjectureistrueifandonlyifitistrueforcompletemultipartitegraphs.Recently,Kostochka,StiebitzandWoodallshowedthatOhba’sconjectureholdsforcompletemultipartitegraphswithpartitesizeatmostfive.Butthecompletemultipartitegraphswithnorestrictionontheirpartitesize,forwhichOhba’sconjecturehasbeenverifiedarenothingmorethanthegraphsKt+3,2*(k-t-1),1*tbyEnotomoetal.,andKt+2,3,2*(k-t-2),1*tfort≤4byShenetal..Inthispaper,usingtheconceptoff-choosable(orL0-size-choosable)ofgraphs,weshowthatOhba’sconjectureisalsotrueforthegraphsKt+2,3,2*(k-t-2),1*twhent≥5.Thus,Ohba’sconjectureistrueforgraphsKt+2,3,2*(k-t-2),1*tforallintegerst≥1.
简介:LiuandYangavethedegreeconditionforabalancedbipartitegraphG=(V_1,V_2;E)tohavekvertex-disjointquadrilateralscontaininganygivenkindependentedgese_1,...,e_kofG,respectively.Theyalsoconjecturedthatforanykindependentedgese_1,...,e_kofG,Ghasa2-factorwithkcyclesC_1,C_2,…,C_kwithrespectto{e_1,e_2,...,e_k}suchthatk-1ofthemarequadrilaterals.Inthispaper,weprovethisconjecture.
简介:Inthispaper,weuseamethodinordertofindexactexplicittravelingsolutionsinthesubspaceofthephasespaceforCH2equations.Thekeyideaisremovingacoupledrelationforthegivensystemsothatthenewsystemscanbesolved.Theexistenceofsolitarywavesolutionsisobtained.Itisshownthatbifurcationtheoryofdynamicalsystemsprovidesapowerfulmathematicaltoolforsolvingagreatmanynonlinearpartialdifferentialequationsinmathematicalphysics.
简介:Wetackletheproblemofconstructing2DcentroidalVoronoitessellationswithconstraintsthroughanefficientandrobustconstructionofboundedVoronoidiagrams,thepseudo-dualoftheconstrainedDelaunaytriangulation.WeexploitthefactthatthecellsoftheboundedVoronoidiagramcanbeobtainedbyclippingtheordinaryonesagainsttheconstrainedDelaunayedges.Theclippingitselfisefficientlycomputedbyidentifyingforeachconstrainededgethe(connected)setoftriangleswhosedualVoronoiverticesarehiddenbytheconstraint.TheresultingconstructionisamenabletoLloydrelaxationsoastoobtainacentroidaltessellationwithconstraints.
简介:ConsiderL2-projectionuhofuton-degreefiniteelementspaceonone-dimensionaluniformgrids.TwodifferentclassesoftheorthogonalexpansioninanelementforconstructingasuperclosetofunctionuhareproposedandthensuperconvergenceforbothuhandDuhareproved.Whennisoddandnoboundaryconditionsareprescribed,thenuhisofsuperconvergenceatn+1orderGausspointsGn+1ineachelement.Whennisevenandfunctionvaluesontheboundaryareprescribed,thenuhisofsuperconvergenceatn+1orderpointsZn+1ineachelement.Iftheotherboundaryconditionsaregiven,thentheconclusionsarevalidinallelementsthatitsdistancefromtheboundary≥ch|lnh|.Theaboveconclusionsarealsovalid.forn-dergreerectangularelementQ1(n).
简介:AconstructiveproofisgivenfortheinversionformulaforzonalfunctionsonSL(2,R).AconcretelyconstructedsequenceofzonalfunctionsareprovedtosatisfytheinversionformulaobtaAnedbyHarish-Chandraforcompactsupportedinfinitelydifferentiablezonalfunctfons.Makinguseofthepropertyofthissequencesomehowsimilartothatofapproximationkernels,theauthorndeducethattheinversionformulaistrueforcontinuouszonalfunctiotmon8L(2,R)somecondition.Theclassicalresultcanbeviewedasacorollaryoftheresultshere.