简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。
简介:为了实现侵彻弹药的高效毁伤,硬目标侵彻引信必须完成最佳炸点识别和起爆控制任务。对比研究了两类炸点精确控制方案:一类是基于侵彻深度经验公式,另一类是基于侵彻引信记录装置中的高g值加速度计测量信息。前者的精度完全依赖于先验信息,而后者的精度则取决于冲击加速度的精确测量和控制算法的实时解算。给出了基于伪自相关的空穴识别算法。冲击加速度信号自乘实现调频脉冲压缩,再通过低通滤波即可提取出平滑的侵彻信号包络线。进一步,详细推导了实时计算侵彻深度的积分算法。利用数学仿真的侵彻两层钢靶和实测的侵彻五层混凝土靶冲击加速度进行了算法验证。空穴识别算法能够准确识别出侵彻介质的层数,而冲击加速度的双积分与弹体实际位移保持一致,相对误差约3%。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。