简介:针对当前行人运动特征监测方案中存在运动信息种类单一、特征提取不完善、识别算法复杂且需要依赖专业检测设备等问题,提出基于智能移动端内置惯性传感器的行人运动特征自动辨识方案,为运动特征识别提供准确多样的运动信息。采集移动端MEMS加速度计输出信息后,分别提取加速度数据的三种时域及频域特征后,通过训练最邻近规则分类器实现行人行走、跑步和上下楼梯运动模式的自动识别。不同年龄不同身高的男女性运动特征提取实验结果表明,基于最邻近规则的移动端行人运动特征辨识方法对4种日常活动的平均查准率和查全率分别达到88.7%和90.3%,对提高微惯性行人导航系统普适性具有促进作用。
简介:为了实现GPS信号缺失下的移动机器人自主导航,解决传统粒子滤波中的粒子退化以及粒子贫乏引起的移动机器人定位和导航精度下降问题,提出了基于小生境理论的启发式蝙蝠优化粒子滤波的同时定位与地图构建算法。首先,在启发式蝙蝠优化算法的速度和位置更新过程中,引入惯性权重,加快了算法寻优精度,提高了收敛速度;然后,利用小生境理论进一步优化启发式蝙蝠算法,利用排挤机制和惩罚函数,有效地保证了种群的多样性,提高了算法的全局寻优能力;最后,将基于小生境理论的启发式蝙蝠优化算法用于传统粒子滤波采样中,使得粒子能够智能、快速地向高似然区域运动,同时提高了传统粒子滤波算法的全局寻优能力和寻优精度。实验结果表明:该算法显著提高了移动机器人导航和定位的精度和实时性。
简介:大视角图像匹配算法的鲁棒性与实时性直接影响飞行器对远距离目标定位的性能。针对目前仿射不变图像匹配算法实时性较差的问题,提出一种惯性信息辅助的快速大视角图像匹配方法。该方法对现有的快速图像匹配算法进行改进,避免了构建高斯金字塔,提高了算法效率。然后利用机载惯性导航信息求解实时图与参考图之间的单应性矩阵,并对实时图进行模拟视角变换以此减小图像间视角差异,克服了现有的大视角图像匹配算法盲目多次的匹配计算,实现了大视角图像的快速匹配。实验结果表明,惯性信息辅助的大视角图像匹配算法与现有的快速仿射不变性匹配算法相比,匹配效率提高了至少2倍。
简介:地磁异常场的强度在空间上变化丰富而在时间上很稳定。对地磁异常值与位置之间的非线性函数关系进行了随机线性化,将地磁异常测量值直接作为观测量,采用扩展卡尔曼滤波技术实现地磁异常测量信息与惯性导航信息的融合,估计并校正了惯性导航系统导航误差.仿真表明,组合导航系统具有如下良好性能:对地磁异常具有广泛的适用性;对初始位置误差、速度误差及姿态误差具有较好的鲁棒性;对地磁数据噪声敏感度较低;可实时更新组合导航信息.将观测量选为参考数据测量值的信息融合策略引入惯性/地磁组合导航。定量描述地磁异常辅助惯性导航系统的信息量,分析组合导航系统对地磁图的适用性.