简介:正如傅里叶变换采用正弦基,单频信号能够在频域形成峰值,分数阶Fourier变换采用线性调频基,线性调频(LFM)信号能够在分数阶Fourier域上实现聚焦,利用此聚焦性通过搜索峰值可实现LFM信号检测和参数估计.通常采用步进式搜索方法,效率低下.为了克服该缺点,通过对分数阶Fourier域优化问题本质的研究,将混沌优化算法引入到分数阶Fourier域极值搜索中.仿真结果表明:本文的方法优于传统的步进式搜索法.
简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.