简介:本文在经典风险模型基础上,把索赔到达过程Nt加以推广为更新过程。且在保单到达非均匀的前提下,把保单到送过程推广为更新过程Mt,得到有限时间t孕余的瞬时分布ψ(u,θ0,t,α),然后求得时刻t的生存概率ψ(t,u,θ0)。
简介:本文研究了保费收入过程是泊松过程和聚合理赔过程中理赔间隔时间和个别理赔额之间具有Boudreauheta1.(2006)中所描述的相依结构的一类更新风险模型.运用生成函数、离散形式的Dickson—Hipp算子和反Z变换等一系列方法,推导出了该模型的Gerber—Shiu函数的生成函数的精确表达式,以及它所满足的瑕疵更新方程.
简介:基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的GaussVonMises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。