简介:将椭圆柱体引入2维声子晶体中,采用平面波展开法计算了该系统的声波禁带结构.对于不同的椭圆柱体截面形状以及旋转角度,该体系都发现了完全禁带,但其禁带的位置与大小有很大不同.当晶格常数a1=4cm,a2=3.2cm,填充率F=0.35时,椭圆柱体截面不旋转的体系只产生一个禁带,其宽度为0.453,而截面旋转π/4的体系产生3个声波禁带,其宽度分别为0.458,0.023和0.062.研究结果表明:在这种2维非均匀液态体系中,声波禁带结构受到填充率,椭圆柱体截面形状以及旋转角度的影响.
简介:首先研究了非线性随机动力系统所对应的Fokker-Planck-Kolmogorov(FPK)方程.其次,讨论了微分方程的三阶TVDRunge-Kutta关于时间的离散差分格式以及关于空间离散的五阶WeightedEssentiallynonOscillatory(WENO)差分格式,并将其相结合,得到FPK方程的TVDRunge-KuttaWENO差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.
简介:针对传统数值方法求解微分-代数方程过程中经常遇到的违约问题,本文以空间太阳能电站太阳能接收器的简化二维模型为例,采用辛算法模拟了简化模型的展开过程,研究了辛算法在求解过程中约束违约问题.首先,基于Hamilton变分原理,将描述简化二维模型展开过程的Euler-Lagrange方程导入Hamilton体系,建立其Hamilton正则方程;随后,采用s级PRK离散方法离散正则方程,得到其辛格式;最后,采用辛PRK格式模拟太阳能接收器的二维展开过程.模拟结果显示:本文构造的辛PRK格式能够很好地满足系统的位移约束.
椭圆柱体二维液态声子晶体声波禁带的研究
一维非线性系统FPK方程的TVD Runge-Kutta WENO型差分解
空间太阳能电站太阳能接收器二维展开过程的保结构分析