简介:利用变分原理研究超线性常微分p-Laplace系统周期解的存在性.在带有脉冲和阻尼作用项时,根据易一型山路定理,得到了系统多重周期解的存在性.
简介:利用Clark定理,研究了一维p-Laplacian方程边值问题多解的存在性,得到了这类边值问题至少有n对非平凡解的充分条件.
简介:引进分次Armendariz环的概念,讨论了分次环R=n∈ZRn及由它导出的非分次环R,R0,及R[x]之间关于Armendariz环性质的关系,并推广了[8]的结论,得到在R=n∈ZRn是Z-型正分次环的前提下,若R是分次Armendariz,分次正规环,则R是P.P.环(Baer环)当且仅当R是分次P.P.环(分次Baer环).
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.
简介:Multimediastreamingservedthroughpeer-to-peer(P2P)networksisboomingnowadays.However,theend-to-endstreamingqualityisgenerallyunstableduetothevariabilityofthestateofserve-peers.Ontheotherhand,proxycachingisabandwidth-efficientschemeforstreamingovertheInternet,whereasitisasubstantiallyexpensivemethodneedingdedicatedpowerfulproxyservers.Inthispaper,wepresentaP2PcooperativestreamingarchitecturecombinedwiththeadvantagesofbothP2Pnetworksandmultimediaproxycachingtechniquestoimprovethestreamingqualityofparticipatingclients.Inthisframe-work,aclientwillsimultaneouslyretrievecontentsfromtheserverandotherpeersthathaveviewedandcachedthesametitlebefore.Inthemeantime,theclientwillalsoselectivelycachetheaggregatedvideocontentsoastoservestillfutureclients.Theassociateprotocoltofacilitatethemulti-pathstreamingandadistributedutility-basedpartialcachingschemearedetailedlydis-cussed.Wedemonstratetheeffectivenessofthisproposedarchitecturethroughextensivesimulationexperimentsonlarge,Inter-net-liketopologies.
简介:SomecharacterizationsoftheconditionalexpectationoperatorsonLebesgue-BochnerspacesL_p(μ,X)aregiven,where1≤p<∞,p≠2.AlsoanexampleisgiventoshowthatthecharacterizationsoftheconditionalexpectationoperatorsonL_p(μ,X)aredifferentfromthatonL_p(μ)_zFinally,arepresentationoftheconstant-preservingcontractiveprojectiononspacesL_p(μ,X)isgotwhen0<p<1.
简介:解一次方程组的思想是消元,消元后转化为一元一次方程.但还要注意仔细观察,认真分析题目的特征、巧妙、灵活地运用消元法来解题.例1 解方程组(1)2x+y-z=2,x+2y+3z=13,-3x+y-2z=-11; ①②③(2)x+2y-3z=-4,4x+8y+9z=5,2x+6y-9z=-15. ①②③分析 上面两题若逐步消元,都比较麻烦.仔细观察,发现方程组(1)三式相加可得y;而方程组(2)呢,可先整体消元求出x和z,于是得妙解.(1)解 由①+②+③得4y=4,即y=1.把y=1代入①、②,得2x-z=1x+3z=11.解之得原方程组的解为x=2,y=1,z=3.(2)解 由②-①×4,得2
简介:<正>LetD={z∈:|z|<1}andφbeanormalfunctionon[0,1).Forp∈(0,1)suchafunctionφisusedtodefineaBergmanspaceA~p(φ)onDwithweightφ~p(|·|)/(1-|·|~2).Inthispaper,thedualspaceofA~p(φ)isgiven,fourcharacteristicsofCarlesonmeasureonA~p(φ)areobtained.Moreover,asanapplication,threesequenceinterpolationtheoremsinA~p(φ)arederived.