简介:本文利用两个变量乘积的微分公式,推导出一类一阶线性非齐次微分方程的通解公式.利用该公式解此类微分方程,仅需运用一般的积分计算技巧对微分方程的自由项求积分即可.与常数变易法的繁琐计算相比,该公式十分方便快捷.
简介:1.问题的提出我们来看下列问题的举例及解答。例1设第一象限内的曲线y=y(x)对应于0≤X≤a一段的长等于曲边梯形0≤y≤y(x),0≤x≤a的面积,a>0是任给的,y(O)=1,求y(X)(参注释[2]p32.11.5131)编者在答案与提示中给出;y=chx例2在上半平面求一条向上凹的曲线,其上任一点P(x.y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点)。且曲线在点(1,1)处的切线与x轴平行。(参注释[2]P317,11.5.5全国硕士研究生统考题)解:曲线y=y(x)在点(x,y)处的法线方程是
简介:利用Hausdorff非紧测度理论、线性算子解析半群理论、分数幂算子和Darbo不动点定理等,得到了当相关半群T(t)在失去紧性等较弱的条件下,一类中立型无穷时滞积分一微分方程适度解的存在性。
简介:Newton定律是描述物体运动的基本定律,Hamiltonian方程则为运动的基本规律提供了另外一种表达。由Hamiltonian方程发展而来的Hamiltonian可积系统是现代孤立子理论的重要组成部分。文中证明了一个关于Korteweg—devries(KdV)类型的非线性发展方程的在加权Sobolev空间中的估计式。这一估计式对证明一类一般的非线性扩散型发展方程的不变性质是非常有用的。