简介:Inthiswork,wewillprovetheexistenceofboundedsolutionsinW_0~(1,p)(Ω)∩L~∞(Ω)fornonlinearellipticequations-div(a(x,u,▽u))+g(x,u,▽u)+H(x,▽u)=f,wherea,gandHareCaratheodoryfunctionswhichsatisfysomeconditions,andtherighthandside/belongstoW~(-1,q)(Ω).
简介:引入了L-空间和L-空间上的KKM类映射,建立了关于该类映射的一些不动点定理,其中包括Schauder型和Fan-Browder型不动点定理.得到了L-空间中的KyFan匹配定理和叠合点定理.
简介:在Tikhonov正则化方法的基础上将其转化为一类l1极小化问题进行求解,并基于Bregman迭代正则化构建了Bregman迭代算法,实现了l1极小化问题的快速求解.数值实验结果表明,Bregman迭代算法在快速求解算子方程的同时,有着比最小二乘法和Tikhonov正则化方法更高的求解精度.
简介:ByusingtheperturbationresultsofsumsofrangesofaccretivemappingsofCalvertandGupta(1978),theabstractresultsontheexistenceofsolutionsofafamilyofnonlinearboundaryvalueproblemsinL^2(Ω)arestudied.TheequationdiscussedinthispaperandthemethodsusedhereareextensionandcomplementtothecorrespondingresultsofWeiLiandHeZhen'spreviouspapers.Especially,somenewtechniquesareusedinthispaper.
简介:Nonlineardynamicalsystemsaresometimesundertheinfluenceofrandomfluctuations.Itisdesirabletoexaminepossiblebifurcationsforstochasticdynamicalsystemswhenaparametervaries.Acomputationalanalysisisconductedtoinvestigatebifurcationsofasimpledynamicalsystemundernon-Gaussianα-stableLévymotions,byexaminingthechangesinstationaryprobabilitydensityfunctionsforthesolutionorbitsofthisstochasticsystem.ThestationaryprobabilitydensityfunctionsareobtainedbysolvinganonlocalFokker-Planckequationnumerically.Thisallowsnumericallyinvestigatingphenomenologicalbifurcation,orP-bifurcation,forstochasticdifferentialequationswithnon-GaussianLévynoises.
简介:Linearsystemsarisingfromimplicittimediscretizationsandfinitedifferencespacediscretizationsofsecond-orderhyperbolicequationsonL-shapedregionareconsidered.Weanalysetheuseofdomaindeocmposilionpreconditioner.sforthesolutionoflinearsystemsviathepreconditionedconjugategradientmethod.Fortheconstant-coefficientsecond-orderhyperbolicequaionswithinitialandDirichletboundaryconditions,weprovethattheconditionnumberofthepreconditionedinterfacesystemisboundedby2+x22+0.46x2wherexisthequo-tientbetweenthelimeandspacesteps.Suchconditionnumberproducesaconvergenceralethatisindependentofgridsizeandaspectratios.Theresultscouldbeextendedtoparabolicequations.
简介:LetL~2([0,1],x)bethespaceoftherealvalued,measurable,squaresummablefunctionson[0,1]withweightx,andlet■_nbethesubspaceofL~2([0,1],x)definedbyalinearcombinationofJ_0(μ_kx),whereJ_0istheBesselfunctionoforder0and{μ_k}isthestrictlyincreasingsequenceofallpositivezerosofJ_0.Forf∈L~2([0,1],x),letE(f,■_n)betheerrorofthebestL~2([0,1],x),i.e.,approximationoffbyelementsof■_n.Theshiftoperatoroffatpointx∈[0,1]withstept∈[0,1]isdefinedbyT(t)f(x)=(1/π)∫_0~πf((x~2+t~2-2xtcosθ)~(1/2))dθ.Thedifferences(1-T(t))~(r/2)f=∑_(j=0)~∞(-1)~j(_j~(r/2))T~j(t)foforderr∈(0,∞)andtheL~2([0,1],x)-modulusofcontinuityω_r(f,τ)=sup{||(I-T(t))~(r/2)f||:0≤t≤τ}oforderraredefinedinthestandardway,whereT~0(t)=Iistheidentityoperator.Inthispaper,weestablishthesharpJacksoninequalitybetweenE(f,■_n)andω_r(f,τ)forsomecasesofrandτ.Moreprecisely,wewillfindthesmallestconstant■_n(τ,r)whichdependsonlyonn,r,andτ,suchthattheinequalityE(f,■_n)≤■_n(τ,r)ω_r(f,τ)isvalid.
简介:Basedontherangespaceproperty(RSP),theequivalentconditionsbetweennonnegativesolutionstothepartialsparseandthecorrespondingweightedl_1-normminimizationproblemarestudiedinthispaper.Differentfromotherconditionsbasedonthesparkproperty,themutualcoherence,thenullspaceproperty(NSP)andtherestrictedisometryproperty(RIP),theRSPbasedconditionsareeasiertobeverified.Moreover,theproposedconditionsguaranteenotonlythestrongequivalence,butalsotheequivalencebetweenthetwoproblems.First,accordingtothefoundationofthestrictcomplementaritytheoremoflinearprogramming,asufficientandnecessarycondition,satisfyingtheRSPofthesensingmatrixandthefullcolumnrankpropertyofthecorrespondingsub-matrix,ispresentedfortheuniquenonnegativesolutiontotheweightedl_1-normminimizationproblem.Then,basedonthiscondition,theequivalenceconditionsbetweenthetwoproblemsareproposed.Finally,thispapershowsthatthematrixwiththeRSPoforderkcanguaranteethestrongequivalenceofthetwoproblems.