简介:现有文献关于空间差异环境专利授权的最优合同基于固定费与可变费,而不是更一般的授权合同。针对这一问题,分析了厂商间的两部制最优专利授权策略。无论专利大小如何,授权合同同时包括固定费与可变费项,不授权不是最优的。专利对内部人的激励高于外部人。与专利发明之前比较,专利增加社会福利但不增加消费者剩余。
简介:参考文献中对Lemke-Howson算法给出了相似于线性规划中的单纯形解法。本文用例指出了该解法中出现循环的情况,导致有解求不出。
简介:设(x*,y*)是以A=[aij]m×n为赢得矩阵G的对策解,则当局中人1,2各自独立地使用其最优策略x*=(x*1,x*2,…,xmn),y*=(y*1,y*2,…,y*n)时,局中人1的赢得期望为对策值v*=x*Ay*T.若局中人双方使用使得方差D(x*,y*)=∑∑(aij-v*)2x*iy*j达最小的对策解(x*,y*),则其赢得靠近v*的概率达到最大.以O记使方差达到最小的对策解的集合.若O满足(x(1),y(1)),(x(2),y(2))∈O蕴涵(x(1),y(2)),(x(2),y(1))∈O,则说O是可换的.本文首先证明了:若矩阵对策G有纯解,则O是可换的.然后证明了如果限定局中人1在其混合扩充策略集的一个非空紧凸子集X中选取策略,那么存在X的一个非空紧子集O(X),它是有限个非空互不相交紧凸集之并,使得只要局中人1使用O(X)中的策略,那么在最坏的情况下可以取得最好的赢得.