简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.
简介:针对固体结构内部温度测量的工程需求,比较了目前工业中应用较多的热电偶测温法、光纤光栅测温法、中子共振谱法和超声测温技术,发现超声测温技术具有非接触式测量、测温范围广、响应速度快等特点而更适用于固体结构内部温度的测量.调研了超声测温技术的发展历史与国内外现状,重点对超声温度场重建方法进行了介绍与分析,发现现有的重建方法主要是针对一维温度场的而且都存在参数获取困难的局限性,导致重建方法的适用性较差并且重建精度较低.综述了超声测温技术在火灾损伤、医疗卫生、核力发电、冶炼制造等领域中的应用,讨论了超声测温技术在测温机理、声时测量算法和时间测量分辨率等方面存在的技术问题,总结了超声测温技术在今后发展中的重点研究方向并提出了展望.
简介:近年来,目标显著性检测引起了众多学者的极大关注,并涌出了一些基于低秩矩阵恢复理论的检测方法.在这些方法中,人们一般使用核范数约束低秩部分.但是,由于秩函数是非凸且不连续的,由此导致核范数不能很好地逼近秩函数,使得检测效果往往不佳.为解决上述问题,现提出基于加权Schatten-p范数与低秩树结构的稀疏分解模型.一方面,利用加权Schatten-p范数对图像背景进行低秩约束.另一方面,采用具有树结构稀疏特性的l2,1范数和图像拉普拉斯正则化对显著性目标进行稀疏约束,以此提高显著性检测精准度.经过与4种已有的常用显著性检测方法在3个不同数据库中的实验结果对比,证实现提出的方法具有更好的检测性能.