简介:摘要:电池管理系统(BMS)可以延长电池寿命,但它取决于所采用方案的准确性。已经开发了不同的技术来通过监控电池的健康状态(SOH)来增强BMS。本文采用循环计数法对电池电压的检测进行了分析,并与人工神经网络这种启发式方法进行了比较。所提出的人工神经网络方法的优点是可以在不将电池与负载断开的情况下监测SOH。此外,人工神经网络的采样数据来自各种技术,包括开路电压(OCV)法、环境温度测量和谷点检测。采用前馈反向传播算法来达到实时监控实验室的目的。结果表明,前馈神经网络(FFNN)在用更多的采样数据训练时,可以获得对SOH的精确估计。
简介:摘要:我国国民经济以及电力相关技术的发展,使得我国的电力事业得到了较快的发展,而在整体电力系统中关键的设施之一就是电力变压器,和电力系统之间的安全稳定运行有着十分紧密的联系,这也正是对其进行检测工作的重要原因。在微电子、计算机等先进技术不断发展的影响下,针对电力变压器进行在线实时监测已经有了极高的可行性。因为油浸性质的电力变压器在运行过程中气体溶解的类型不会出现对应的差异,传统故障诊断方式对于这些复杂多变且无标签的数据无法进行充分应用,因此一种基于深度学习神经网络的诊断方式应运而生。本文先从深度学习的概念以及深度学习神经网络模型分析入手,并在文后详细的在电力变压器故障诊断中如何运用深度学习网络进行了分析。
简介:摘要:本文针对现役火电厂脱硝改造工程的造价估算,通过对影响脱硝改造造价的主要因素进行综合分析,利用 MALTAB软件构建了基于 BP人工神经网络的火电厂脱硝工程造价的快速估算模型。通过现有工程造价实例对快速估算模型进行训练、模拟及测验,并将模型估算值与现有工程造价实例进行了对比,结果表明该方法可以较好的估算火力发电厂脱硝改造的工程投资。该模型具有较好的快速性及适用性,可以为估算工程造价提供参考。
简介:摘要:风能相较于传统能源拥有着巨大的优势,但风电场投建初期数据不足的问题往往为研究人员所忽略。本文在研究 BP 神经网络的基础上,针对训练量不足的问题,提出了运用插值法对预测结果进行修正的方法,使得不同阶段的预测精度相较于传统神经网络有不同程度的提高,表明了本文方法的价值与意义。