简介:如何在对参数进行估计的同时自动选择重要解释变量,一直是面板数据分位回归模型中讨论的热点问题之一。通过构造一种含多重随机效应的贝叶斯分层分位回归模型,在假定固定效应系数先验服从一种新的条件Laplace分布的基础上,给出了模型参数估计的Gibbs抽样算法。考虑到不同重要程度的解释变量权重系数压缩程度应该不同,所构造的先验信息具有自适应性的特点,能够准确地对模型中重要解释变量进行自动选取,且设计的切片Gibbs抽样算法能够快速有效地解决模型中各个参数的后验均值估计问题。模拟结果显示,新方法在参数估计精确度和变量选择准确度上均优于现有文献的常用方法。通过对中国各地区多个宏观经济指标的面板数据进行建模分析,演示了新方法估计参数与挑选变量的能力。
简介:对两水平模型与静态面板数据模型进行对比分析:多水平模型主要用于分析具有层次结构的统计数据,面板数据模型是针对面板数据而提出的一种应用广泛的计量经济模型。面板数据可以看成是具有截面水平与时间水平的两层数据,两水平模型也能对面板数据进行分析,在一定条件下具有一定的相似性。因此,提出多水平的静态面板数据模型,为分析具有多个层次结构的面板数据提供分析工具。