简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Ree=261.5,远远小于二维不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.
简介:开式凹腔作为超燃冲压发动机中增加掺混和稳焰的装置,其流动稳定性的研究对深入理解凹腔增加掺混和稳焰机理以及凹腔的设计有着重要的学术意义和工程应用价值.基于大涡模拟方法对超燃冲压发动机开式凹腔流动进行数值模拟,分别米用动力学模态分解(dynamicmodedecomposition,DMD)和本征正交分解方法(properorthogonaldecomposition,POD)对自激振荡流动进行稳定性分析.DMD方法可准确提取凹腔的振荡频率,与Rossitei'模型以及压力脉动FFT分析得到的频率吻合较好,且DMD中对应Roster前3阶频率的模态在流动中的主导作用顺序也与FFT分析结果一致,自激振荡中RossiterH模态占据主导作用,同时DMD方法对Rossiter3阶以上模态频率的预测能力明显强于FFT分析方法.在对低频的提取方面,DMD方法比Rossiter模型更具有优势.与前6阶Rossiter模态对应DMD模态均缓慢收敛,主要表现为剪切层中的分离涡结构和中部及下游区域中的涡结构.前3阶不稳定模态中的分离涡结构主要集中在中部剪切层以及后缘附近区域.POD方法中较少的模态包含流场绝大部分的能量.但是,通过POD方法提取的模态频率在分辨率上效果不佳,提取到最低频率为Rossiter3阶模态对应的频率,且模态中均存在次频,次频与主频之间的耦合导致模态的形态相差较大.另外,与DMD方法相比POD方法无法判断所提取的模态的稳定性.
简介:针对四旋翼无人机鲁棒自适应飞行问题,提出了一种基于指数收敛的控制方法。考虑到四旋翼系统的欠驱动、强耦合等非线性特性,采用线性化反馈控制策略实现对其轨迹追踪飞行能力的基本控制;针对线性化反馈控制易受系统内外部未知干扰等影响,采用基于指数收敛干扰观测器组合控制设计,实现四旋翼飞行的鲁棒与自适应控制;线性反馈及状态观测器控制系统基于指数收敛稳定。进行了仿真分析,结果表明,干扰观测器对四旋翼系统中存在的未知干扰具有很好的估计能力,所设计的基于指数收敛控制系统,结构简单,且具有较强的干扰抑制能力和较高的系统稳定性,满足四旋翼无人机的鲁棒及自适应飞行能力要求。
简介:针对四旋翼无人机轨迹追踪问题,提出了一种基于扩张状态观测器的鲁棒滑模控制方法。考虑无人机系统受到内外部扰动、线速度未知等不确定性影响,通过引入扩张状态观测器,对系统不确定因素进行实时估计并给予补偿,实现了系统对扰动的鲁棒性和对环境的高度适应性。同时,滑模控制通过引入切换函数来消除干扰及不确定项,但较大的切换增益会引起系统颤振,因此,干扰和不确定项是颤振的主要来源,利用扩张状态观测器来估计干扰及不确定项并加以补偿,消除了颤振。利用Lyapunov理论,证明了控制系统的稳定性。系统仿真实验结果表明,所提出的控制方法能够保证四旋翼无人机轨迹追踪的鲁棒性,旋翼转速最大跳变幅值降低86.4%-94.5%,提高了系统稳定性。