简介:以飞行器机翼作为工程背景,将机翼简化为悬臂板模型,研究了受横向电压激励、基础激励、面内激励联合作用下复合材料层合悬臂板的非线性动力学问题.首先建立其动力学模型,考虑冯-卡门大变形理论,利用Hamilton原理建立复合材料层合悬臂板的非线性动力学方程;选择符合边界条件的模态函数,利用Galerkin方法对系统进行四阶离散,得到四自由度非线性常微分方程;代入系统实际物理参数,应用MATLAB软件数值模拟得到系统振动幅值随电压激励变化的分叉图,由图可知,电压激励使系统从混沌运动变为倍周期运动,降低了系统振幅,保持系统的稳定.
简介:模糊控制器的设计是模糊控制系统的核心,而模糊控制器设计的关键部分是模糊规则,模糊规则的好坏决定了模糊控制系统的控制效果.而一般模糊规则是通过专家经验获得的,存在很大的主观性的缺点,本文以智能悬臂梁结构为研究对象,设计了模糊控制器,改进了遗传算法,提出了使用改进遗传算法对模糊规则进行优化的方法,并给出了遗传编码、适应度函数的确定方法,最后利用Matlab/Simulink建立智能悬臂梁结构的仿真模型,对模糊规则优化前后的智能悬臂梁振动控制结果进行对比.仿真结果表明,优化后的模糊规则使智能悬臂梁的振动幅度显著缩小,而且振动衰减速度明显加快.
简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.
简介:对构造的单边碰撞悬臂梁系统进行实验的定性研究,在基础激励实验中,变换多次激励频率,通过加速度传感器测量悬臂梁测点的响应信号,并通过力传感器测量得到限位器与柔性悬臂梁之间的碰撞力.通过Matlab软件对实测响应的时、频域分析处理,观察到系统复杂的周期、概周期、混沌等多种运动形式,并发现其中运动形式变化的区间存在突变.尝试对实验时域数据计算最大Lyapunov指数,以进一步验证其中混沌的存在,进一步发现了混沌响应下末端加速度响应与碰撞力的传递函数具有频响函数特征.实验研究体现了非线性动力学现象,也对分析应用混沌运动的实验结果提供了一个新视角.
简介:针对复合材料层合悬臂板,在其上表面铺设压电纤维复合材料MFC作为作动器,同时在下表面对称铺设压电薄膜(PVDF)作为传感器,应用速度反馈控制方法研究其主动振动控制.运用Hamilton原理和假设模态法推导含多个MFC作动器的复合材料层合板的力电耦合结构运动方程,其中考虑了MFC作动器作为悬臂板附加质量及刚度的影响.基于模态控制力/力矩最大化的原则,将多对MFC作动器/PVDF传感器铺设在层合悬臂板前几个低阶模态应变最大的区域,通过算例得出结构受控前后的时域和频域响应以及各MFC作动器所需的控制电压曲线.讨论复合材料层合板纤维铺设角度不同情况下,作动器MFC铺设位置及压电纤维铺设方向的相应变化.
简介:研究了横向气动载荷和参数激励联合作用下复合材料悬臂外伸矩形板在伸出过程中的非线性动力学问题.根据Reddy的高阶剪切层合板理论,应用Hamilton原理建立了外伸板在横向气动力和参数激励作用下的非线性动力学方程,其中横向气动力采用一阶活塞气动力.然后应用Galerkin方法对系统偏微分形式的非线性方程进行离散,得到了一组时变系数的非线性动力学方程.在此方程的基础上,对复合材料悬臂外伸板进行了数值模拟分析,讨论了外伸速度对悬臂外伸板非线性动力学特性的影响.
简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插值方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.