学科分类
/ 18
358 个结果
  • 简介:非线性、非高斯条件下进行动基座传递对准,如果采用卡尔曼滤波会出现误差较大甚至发散的问题。本文引入强跟踪自适应滤波器,建立对估计误差的一步预测方差PK/K-1的加权算法,来达到抑制噪声的目的;同时,针对初始对准对准精度与快速性的要求,建立了动基座传递对准精确的非线性滤波模型。通过计算机仿真,模拟了飞机机动模式,验证所提滤波器的可行性。最后,通过与扩展卡尔曼滤波的比较,说明非线性强跟踪自适应滤波器在对准精度与速度上都有更好的表现。

  • 标签: 捷联惯导 传递对准 动基座 非线性强跟踪自适应滤波 扩展卡尔曼滤波
  • 简介:本文首先建立下列两类差分方程△(xn-rnrn-rxn+r)^a+qnf(n-σ)=0(*)和△(rn△y)^n+τ^-aqnf(rn-σyn)=0(**)振动性的等价性,然后给出方程(*)振动性的一些判则。

  • 标签: 等价性 中立型差分方程 振动性 非线性
  • 简介:本文运用一种变量代换将非线性Sdhrodinger方程转变为半线性椭圆型方程,再利用山路引理,Lion集中紧引理,Soblev嵌入不等式证明一类Schrodinger方程孤子解的存在性.

  • 标签: 非线性 SCHR DINGER方程 山路引理 孤子解
  • 简介:Inthispaper,weconsidertheevolutionofasolitonwhendissipativeloseexists.Bymeansofnon-perturbedmethod,anexactenvelopewavesolutionofnonlimearSchroedingerequationwithdissipativetermisobtained.ItisshownthatwhenГ=γ0/(1+2γot),thesolutiongivenherestillmaintainsthehyperbolicsecantprofile.

  • 标签: 耗散项 非线性SCHRODINGER方程 精确包络波解 偏微分
  • 简介:本文介绍求解非线性超定方程组的4种数值方法,改进穷举法和蒙特卡洛算法,提出蒙特卡洛一穷举混合算法.应用这些数值方法求解太阳影子定位技术中提出的非线性超定方程组,根据数值试验结果分析各算法的优缺点;最后通过数值实例,比较各算法的求解时间和精度,验证各算法的有效性和蒙特卡洛一穷举混合算法的高效性.

  • 标签: 非线性超定方程组 穷举法 遗传算法 蒙特卡洛算法 MATLAB
  • 简介:讨论具有非线性耗散边界反馈的非均质Euler-Bernoulli梁的镇定问题.首先利用非线性半群理论和能量摄动方法,证明了文中所给出的非线性耗散边界反馈控制可以镇定闭环系统的能量,并导出了闭环系统的能量的衰减速度.

  • 标签: 反馈镇定 耗散 半群理论 边界反馈控制 摄动方法 非线性
  • 简介:本文主要讨论了高阶Kirchhoff方程的指数吸引子,对于低阶的Kirchhoff方程的指数吸引子,有着广泛的研究,本文在低阶类型方程研究的基础上,研究了高阶Kirchhoff类型方程的指数吸引子.首先,对于高阶Kirchhoff方程中的非线性项,进行了合理的假设,运用了广义Gronwall不等式,Young不等和Poincare不等式,结合Sobolev空间理论,证明了该方程的动力系统的Lipschitz连续性,离散的挤压性质,然后获得了指数吸引子.

  • 标签: 高阶Kirchhodff方程 LIPSCHITZ连续性 指数吸引子
  • 简介:针对带有末端多约束的三维非线性制导问题,设计了一种通用模型预测静态规划制导算法。该制导算法通过向后迭代求解权矩阵微分方程对控制量进行更新,将动态优化问题转化为静态优化问题,计算效率得以提高。阐述了通用模型预测静态规划制导算法的基本原理,详细给出了基于通用模型预测静态规划算法的制导律设计过程。所设计的制导律满足末端法向加速度约束,因此,间接满足末端弹体姿态角约束。仿真时考虑目标的机动方式和落角约束,仿真结果表明,末端位移偏差小于0.5m,末端落角可控制在0.01°范围内,末端法向加速度小于0.01m/s^2,该制导律能够很好地满足末端位移、落角和法向加速度约束。

  • 标签: 通用模型预测静态规划 制导律 落角约束 法向加速度约束 弹体姿态角约束
  • 简介:主要研究微生物发酵过程中不同工况下的非线性、非光滑且无法求得解析解的动力系统及其主要性质,建立了具有数百个不同动力系统为主要约束、有连续与离散两种辨识参量、依据实验数据与生物系统鲁棒性为性能指标的辨识模型,阐述了此类辨识模型与最优控制模型的建立方法、数值模拟方法及并行优化计算方法,并介绍了笔者的著作《非线性发酵动力系统——辨识、控制与并行优化》的基本内容。

  • 标签: 非线性动力系统 辨识模型 生物系统鲁棒性 并行优化
  • 简介:在Banach空间中讨论一类新的广义非线性混合型拟变分包含问题.用预解算子的概念,建立了一种解此类问题的算法.所得结果改进、推广和统一了文献中的一些结果.

  • 标签: 变分包含 预解算子 m-增生映射 迭代方法
  • 简介:考察一类带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶差分隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.

  • 标签: 非线性SCHRODINGER方程 Legendre谱元法 误差分析