简介:基于平衡损失的思想和最小二乘统一理论,对带线性约束的一般线性模型提出了一种全面度量估计优良性的标准.给出了此标准下模型中回归系数线性函数的约束广义平衡LS估计,并得到了约束广义平衡LS估计唯一性的一个充分条件.
简介:利用范数假设条件给出了带扰动的m一增生算子的一些映射定理.其结果是:B+D R(T+C)并且int(B+D) R(T+C)的类型.其中B、D是实Banach空间X的子集,算子T:X D(T)→2~X至少是m一增生的,扰动算子C:X D(C)→X至少是紧、demi一半连续或完全连续的.这些结果推广和改进了已有文献的有关结果.
简介:考虑一个带非局部低阶项非线性抛物型方程的时间最优控制问题.首先利用Schauder不动点定理证明了系统的适定性,然后利用Carleman不等式和Kakutani不动点定理证明了容许控制和最优控制的存在性,并且建立了时间最优控制的最大值原理.
简介:设E是任意实Banach空间,T:E→E是Lipschitz的强增生算子.证明了,带误差的Ishikawa迭代序列强收敛到方程Tx=f的唯一解.特别地,还给出了Ishikawa迭代序列的收敛率估计.另一方面,一个相关结果,讨论了E中lipschitz强伪压缩映象的不动点的带误差的Ishikawa迭代序列的收敛性.
简介:利用临界点理论研究带阻尼项的二阶Hamilton系统周期解的存在性.在具有部分周期位势和线性增长非线性项时,根据广义鞍点定理定理,得到了系统多重周期解存在的充分条件.
简介:在一致光滑Banach空间中,证明了广义Lipschitzφ-增生算子的带误差项的Ishikawa迭代序列强收敛于方程Tx=f的解,其结果改进和扩展了近期许多相关结果.并由此得出了Ishikawa迭代序列稳定性的一些结果.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:当修复率为常数时通过研究具有带临界和非临界故障的可修k/N:G冗余表决系统研究中出现的投影算子的表达式得到该系统的时间依赖解指数收敛于该系统的稳态解.