学科分类
/ 1
2 个结果
  • 简介:摘要 : 随着信息技术的发展,利用大数据分析、物联网监控、传感器感知、无线通信等技术构建一种蜂箱蜂群实时在线监测系统,是减少因开箱检查造成蜂群应激反应的可行解决方案。本研究针对蜂箱封闭环境进行实时监测困难的现状,利用 STM32F103VBT6 32位微控制器,同时融合了温湿度传感器、微麦克风以及激光对射传感器,开发了一套低功耗、可连续工作的蜂群箱体关键参数在线监测系统,实现了养蜂生产过程中多参数信息获取以及蜂箱内蜂群的环境参数和生活状态的实时在线监测。系统主要包括核心处理模块、数据采集模块、数据发送模块以及数据库服务器等。数据采集模块包括蜂箱内部温湿度采集单元、蜂群声音采集单元、蜜蜂进出巢数量计数单元等,通过接入移动通信网络进行数据传输。系统现场部署性能测试结果表明,研制的系统能够实时监测蜂箱内温湿度,有效区别进出蜂箱的蜜蜂并记录进出巢门的蜜蜂数量,且自动获取的蜂群声音与标准的蜂群声音分布相吻合。本系统符合设计要求,采集参数准确可靠,可以作为蜂群相关研究的数据采集方法。

  • 标签: 蜂群箱体 STM32单片机 在线监测 传感器 农业物联网
  • 简介:摘要 : 准确获取西兰花花球面积和新鲜度是确定其长势的关键步骤,本研究通过对深度残差网络 ResNet进行改进得到一种新型的西兰花花球分割模型,并通过花球部位黄绿颜色占比判断其新鲜度,实现低成本高效准确地西兰花表型信息提取。主要技术流程包括:( 1)基于地面自动影像获取平台拍摄西兰花花球正射影像并建立原始数据集;( 2)对训练图像进行预处理并输入模型进行分割;( 3)基于颜色信息用粒子群结构 PSO和大津法 Otsu对分割结果进一步进行阈值分割,获取其新鲜度指标。试验结果表明:本研究建立的分割模型精度优于传统深度学习模型和基于颜色空间变换和阈值分割模型, 4个评价指标结构相似性指数 (SSIM)、平均精度 (Precision)、平均召回率 (Recall)、 F-度量 (F-measure)结果分别为 0.911、 0.897、 0.908和 0.907,相比于传统方法提升了 10%-15%,且对土壤反射率波动、冠层阴影、辐射强度变化等干扰具有一定的鲁棒性。同时,在分割结果的基础上采用 PSO-Otsu法可以实现花球新鲜度快速分析,其精度超过了 0.8。本研究结果实现了西兰花田间多表型参数的高通量获取,可以为作物田间长势监测研究提供重要参考。

  • 标签: 深度学习 西兰花表型 机器视觉 自动分级 田间平台