学科分类
/ 1
1 个结果
  • 简介:Thechaoticcharacteristicsoftimeseriesoffivepartialdischarge(PD)patternsinoil-paperinsulationarestudied.TheresultsverifyobviouschaoticcharacteristicofthetimeseriesofdischargesignalsandthefactthatPDisachaoticprocess.Thesetimeserieshavedistinctivefeatures,andthechaoticattractorsobtainedfromtimeseriesdifferedgreatlyfromeachotherbyshapesinthephasespace,sotheycouldbeusedtoqualitativelyidentifythePDpatterns.Thephasespaceparametersareselected,thenthechaoticcharacteristicquantitiescanbeextracted.ThesequantitiescouldquantificationallycharacterizethePDpatterns.TheeffectsonpatternrecognitionofPRPDandCAPDarecomparedbyusingtheneuralnetworkofradialbasisfunction.Theresultsshowthatbothofthetworecognitionmethodsworkwellandhavetheirrespectiveadvantages.Then,boththestatisticaloperatorsunderPRPDmodeandthechaoticcharacteristicquantitiesunderCAPDmodeareselectedcomprehensivelyastheinputvectorsofneuralnetwork,andthePDpatternrecognitionaccuracyistherebygreatlyimproved.

  • 标签: 混沌特性 时间序列 局部放电 油纸绝缘 径向基函数神经网络 混沌吸引子