学科分类
/ 8
158 个结果
  • 简介:本文叙述了基于神经网络方法的感应电机转子故障诊断的进展情况。神经网络在适当选择输入输出时可以用比较有效的方法取代用以构成诊断系统知识库的故障电机模型。通过对正常电机的实验性试验和在电机故障情况下的模拟取得的数据来训练网络,诊断系统就可以鉴别“正常”电机和“故障”电机。该程序可取代基于电机模型的诊断程序所要求触发门限的语句。

  • 标签: 感应电动机 转子 故障 神经网络 在线诊断
  • 简介:摘要随着社会经济的发展,能源和环境问题越来越收到国家和人民的重视,其中煤炭资源的的不合理使用导致了严重的资源紧张和环境污染问题。传统的给煤量预测技术预测效果一般,且不具备长时间预测能力,没有足够的调度时间余量。本文提出基于长短时记忆神经网络(LSTM)的给煤量预测方法,采集火电机组实测数据,进行研究分析,实验结果表明LSTM可以有效可靠的进行给煤量预测,具有良好的工程应用前景。

  • 标签: 给煤量预测 深度学习 长短时记忆
  • 简介:以风电功率预测为背景,将小波理论与神经网络结合,在BP神经网络模型的结构基础上构造了小波神经网络,并提出了基于附加动量法改进的小波神经网络。利用附加动量的小波神经网络建立天气预报数据与发电功率的映射模型,并进行实际预测。利用MATLAB进行仿真,验证了设计预测模型的实际可行性,并且预测精度满足相关要求。

  • 标签: 风力发电 功率预测 BP神经网络 小波分析 小波神经网络
  • 简介:在开关磁阻电机直接转矩控制系统中,为了提高磁链观测器的性能,准确地实现磁链观测,提出基于粒子群优化的递归神经网络定子磁链观测器。利用训练样本对网络进行离线训练,通过训练过程中不断调整网络的权值和阈值,形成一个泛化能力强、结构简单的网络来实现电压、电流和磁链的非线性映射。将所建磁链观测器应用到开关磁阻电机直接转矩控制系统仿真中,仿真结果表明,对比传统递归神经网络磁链观测器,该方法不仅提高了收敛速度,而且具有很高的精确度和很强的泛化能力,证明了该方法的正确性和可行性。

  • 标签: 开关磁阻电机 直接转矩控制 定子磁链观测器 粒子群优化 递归神经网络
  • 简介:摘要随着社会经济的不断发展,机电设备普及应用于各个领域,成为企业发展进程中不可忽视的一个组成部分,为了确保机电设备运行的安全、稳定与高效,要加强对机电设备的温度监测和预警,要以BP神经网络为载体,准确快速地显示机电设备运行中温度的变化状态,充分利用计算机网络优势特点,获取机电设备的温度相关数据信息,从而全面而清晰地反应出机电设备的线路老化及负载程度,避免机电设备故障而引发的生产事故。

  • 标签: BP神经网络 机电设备 温度 监控 预警 系统
  • 简介:摘要变压器的安全稳定性对保障供电可靠性具有重要意义,及时对变压器进行故障诊断并排除故障可大大减小变压器出现事故的概率。本文通过对某电厂2号升压变压器高能放电事件,采用BP神经网络建立了变压器故障诊断模型,以实现对变压器异常状态的及时检测,通过油色谱数据发现了变压器的异常放电,有效保障了变压器的安全运行。

  • 标签: 变压器 油色谱 BP神经网络 放电
  • 简介:摘要设计了具有参数自整定、最优化功能的改进型神经元PID控制器,并应用到PMSM控制系统的设计中。最后利用MATLAB/SIMULINK建立了系统仿真模型,仿真试验表明相比于神经元PID控制,改进后的控制策略可显著提高系统快速性、精确性和鲁棒性。

  • 标签: 神经元PID控制器,二次型性能指标,永磁同步电机,控制策略
  • 简介:

  • 标签:
  • 简介:摘要预测是对尚未发生的和目前还不明确的事物进行实现估计和推测,是以实现对事物将要发生的结果进行探讨的研究。神经网络早已应用于各行各业,如今电力行业的采购决策也可依靠神经网络建模得以实现,电力公司的采购量虽然看起来无章可依,实则蕴含着一定的可预测性,通过对神经网络的研究,将历史数据输入到系统中,可以很接近的预测到接下来几个月的采购量,以给领导层决策提供依据,也为企业的发展保驾护航。

  • 标签: 预测 神经网络 电力物资 采购
  • 简介:采用神经网络来辨识汽车发动机的有关歧气管压力环节的非线性动态模型,为实现系统的非线性动态映射,引入了外部回归项,然后用动态Levenberg-marquardt算法来对动态模型进行参数估计.仿真结果表明,基于神经网络的模型具有较高的精度和较强的通用性.在此基础上,用动态增益矩阵法的故障诊断方法和神经网络实现汽车发动机的在线故障诊断.

  • 标签: 神经网络 汽车发动机 非线性系统 模型辨识 故障诊断
  • 简介:将分支前馈神经网络(BFNN)运用于数字字符的模式识别问题中,其某些性能优于标准反向传播(BP)网络。BFNN的隐层神经元与输出神经元之间为分组对应关系,采用的学习算法与标准BP算法类似。BFNN可以根据样本的可分性构建最适宜的网络结构。在对大规模、分类复杂的样本进行识别时,性能优于标准BP网络。

  • 标签: 分支前馈网络(BFNN) 模式识别 标准反向传播网络 数字字符
  • 简介:摘要:如今国内设备缺乏对充电机排除灰尘进行检测,使得我们无法判断充电机是否损坏,而直流屏恰好可以达到检测的目的。本文通过阐述预测分析常用的理论技术、预测方法,表达基于神经网络的预测分析充电柜粉尘项目研究的可行性。

  • 标签: 神经网络 直流屏 预测
  • 简介:摘要:光伏电站输出功率呈现随机性强、波动性大、难预测等特点,大规模的光伏电站接入电网会给电网的安全稳定运行、调度和调峰带来极大的困难。准确预测电站未来某一时段内各时刻点输出功率,对保障电网稳定运行、提高能源利用效率具有重要的意义。本文基于BP神经网络模型,分别以实测气象数据和中尺度数值天气预报数据为训练样本,对比研究了不同数据样本下神经网络模型对光伏电站同一天气情况下的出力预测效果。

  • 标签: 神经网络 光伏电站出力 超短期预测
  • 简介:摘要热带气旋的定量精细化风险评估对防台减灾和救灾工作极为重要,它受到许多复杂因素的综合影响,如热带气旋的年频次、路径分布、强度分布以及社会经济因素等,因此非常具有挑战性。本文基于离散型Hopfield神经网络,建立热带气旋风险评估模型,结合地理分析,研究不同地区的受灾情况及其风险评估。

  • 标签: AHP-Hopfield 神经网络 热带气旋 风险评估
  • 简介:摘要当前,遗传算法已经获得了广泛的应用,其作为一种优化成功的搜索算法,其在应用市场上十分畅销。但是,随着技术的发展,此种算法存在诸多的缺陷。例如,容易出现局部最优的问题,或者是收敛速度缓慢的问题等,尤其是在神经网络优化算法方面。文章是对遗传算法的改进进行了详细的研究,对改进遗传算法的神经网络优化算法展开了深度探究。此次探究的主要目的是为了通过对算法改进策略的研究,进而进一步对算法的可行性进行验证。

  • 标签: 遗传算法 神经网络 优化算法 故障诊断
  • 简介:摘要随着电网发展,集控站模式兴起。运行部门精准地预测倒闸操作所需要的时间,可以大大提高供电可靠性,提升运行人员的工作效率。本文结合现有的集控站模式,提出了BP神经网络法,帮助运行人员合理预测操作所需时间。

  • 标签: 集控站 可靠性 效率BP神经网络
  • 简介:直线电机驱动的H型数控平台系统在加工零件时,负载扰动、外部干扰和两电机安装的差异与机械耦合会影响单轴的跟踪精度且会产生同步误差。针对此问题,本文首先用拉格朗日方法给H型平台建模,然后提出一种改进的非奇异终端滑模控制(NTSMC)来进行位置控制器的设计,在不失滑模控制鲁棒性的情况下,有效地削弱了该控制所产生的抖振问题,提高了单轴的跟踪精度。在两轴间采用Sugeno型模糊神经网络(SFNN)补偿控制器来动态补偿H型平台的同步误差。通过模糊神经网络以任意精度逼近非线性系统的能力使同步误差在有限时间内趋近于零,以满足H型平台数控系统的高精度加工要求。仿真结果表明,所设计的控制系统能够有效提高系统的同步控制精度和鲁棒性。

  • 标签: H型平台 非奇异终端滑模控制 Sugeno型模糊神经网络补偿控制器 负载扰动
  • 简介:摘要电网电力系统的安全稳定并且实现可实现经济运营,与其对负荷的准确预测具有较为重要的关系,基于多分辨分析思想为基础的小波分析结合BP神经网络构建模型,对电网短期符合进行预测。首先,采用正交小波变换的塔式结构快速算法对电网负荷数据序列实现小波分解过程,剔除负荷中的非有价值历史数据,获得真实规律性电力负荷数据;然后,通过小波分解后,根据分解后的各层分量选取阈值,获得符合其特点的分量数据后输入神经网络,经过小波算法的重构过程得到预测日期的负荷数据。仿真结果显示,运用文中构建的改进BP神经网络模型预测较人工网络预测精度具有明显优势,该预测方法能够更好地对电网进行有效的负荷预测。

  • 标签: BP神经网络 电网负荷预测
  • 简介:摘要近年来,我国的电力系统有了很大进展。针对传统电力电缆绝缘损伤检测方法存在检测流程复杂和无法大规模整体检测的缺点,本文结合图像无损接触方式和深度学习方法,提出了一种基于深度学习的电力电缆图像破损批量检测方法。该方法创新性地建立了基于残差和深度可分离模块的轻深度卷积神经网络模型,和以往的卷积神经网络模型相比,网络极好地平衡了系统的识别时间和识别精度,能实现高效、无损、快速的大规模电缆外表面多样化异常检测。和传统学习方法和已有深度卷积神经网络模型的实验结果对比表明,本文方法具有良好的实时性、鲁棒性和识别率,识别正确率达到99.47%。

  • 标签: 电力电缆 图像处理 深度学习 轻卷积神经网络
  • 简介:摘要模糊神经网络无论作为逼近器,还是模式存储器,都是需要学习和优化权系数的。学习算法是模糊神经网络优化权系数的关键。对于逻辑模糊神经网络,可采用基于误差的学习算法,也即是监视学习算法。对于算术模糊神经网络,则有模糊BP算法,遗传算法等。

  • 标签: 神经网络 光伏发电 功率 控制方法