简介:采用1种遥感影像和单纯的监督分类方法,在黄土丘陵沟壑地区的土地利用调查中,难以获得高精度的土地利用数据.为解决此问题,以陕北无定河流域为研究区,以主成分变换的方法,对多源遥感影像(TM多光谱数据和SPOT全色波段数据)进行融合处理;同时,在分类中,采用监督分类与非监督分类相结合的混合分类法,改进训练样本选取方法,先以非监督分类获得初始训练样本,在对样本进行删除、增补、合并等调整的基础上,再进行监督分类.2种方法的结合使用,使土地利用信息自动提取的精度明显提高.与仅以TM影像为信息源,采用单纯监督分类法的分类结果对比可知:土地利用各类别的提取精度都有不同程度的提高,分类总精度从82.0%提高到89.2%;水体、水田和城镇用地等面积较小类别的精度,提高了10%以上;坡耕地与林草地的混分现象明显减少,精度均提高了5%以上,取得了良好的分类效果.研究结果为陕北黄土丘陵沟壑区土地利用变化动态监测,提供了重要的技术支持和借鉴.
简介:[目的/意义]奶牛跛行检测是规模化奶牛养殖过程中亟待解决的重要问题,现有方法的检测视角主要以侧视为主.然而,侧视视角存在着难以消除的遮挡问题.本研究主要解决侧视视角下存在的遮挡问题.[方法]提出一种基于时空流特征融合的俯视视角下奶牛跛行检测方法.首先,通过分析深度视频流中跛行奶牛在运动过程中的位姿变化,构建空间流特征图像序列.通过分析跛行奶牛行走时躯体前进和左右摇摆的瞬时速度,利用光流捕获奶牛运动的瞬时速度,构建时间流特征图像序列.将空间流与时间流特征图像组合构建时空流融合特征图像序列.其次,利用卷积块注意力模块(Convolutional Block Attention Module,CBAM)改进PP-TSMv2(PaddlePad-dle-Temporal Shift Module v2)视频动作分类网络,构建奶牛跛行检测模型Cow-TSM(Cow-Temporal Shift Module).最后,分别在不同输..
简介:[目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素.为解决规模化肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法.[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集.其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需体尺测点.然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛体区域的点云完整,从而找到所需测点并返回到二维数据中.最后,将二维像素点投影到三维点云中,利用相机参数计算出投影点的世界坐标,从而进行体尺的自动化计算,最终提取肉牛体高、十...
简介:目前在卷烟研发过程中,实验室烟丝加料加香小样制样环节仍多采用手工配料配香,存在精度低、均匀性差,及烘烤后烟丝水分精度无法精准控制等问题,突出体现为中小样制样与大线中样存在品质差异,这是一个行业共性问题。我们研制了一台可实现实验室卷烟小样制样过程自动化配料、配香、加料、加香及烘丝功能的高精度自动化加料加香烘丝一体化微型设备。应用效果显示:1)其调配精度与调配中心大线生产的精度基本一致。2)微型设备调配料、香与大线生产调配料、香相似度分别为99.11%、98.26%;微型设备烟丝加料加香均匀度为98.79%;3)经感官评价,微型设备处理烟丝制成的卷烟感官质量与大线生产样差异值为0.5分,明显优于人工操作效果。说明该设备能有效模拟大线生产过程,有利于提高研发效率。
简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致性(Random Sample Consensu...