简介:针对我国某一型号大型卫星液体燃料Cassini贮箱(腰为圆柱,两底为半球),应用有限元方法研究了微重环境下液体的小幅晃动问题和横向受迫晃动问题,采用Galerkin方法得到了系统的有限元离散方程;得到了晃动固有频率和等效力学模型参数.针对周期脉冲激励,推导了液体作用于贮箱壁的晃动力和晃动力矩计算公式并给出了数值计算结果和分析结论.
简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.
简介:分别从推广的微分方程幂级数解的理论和线性算子半群理论等不同的角度研究了非线性动力学方程的求解问题,得到了所谓的李级数解法.并进一步讨论了算法的具体实施过程,它可以用于构造非线性动力学方程任意高阶的显式积分格式.最后,把李级数解法应用于求解广义Hamilton系统,它能保持广义Hamilton系统真解的典则性.数值算例显示该方法是有效的。
微重环境下Cassini贮液腔中液体晃动特性研究
基于快速Fourier变换法的广义特征值问题重根辨识方法
非线性动力学方程的李级数解法及其应用