学科分类
/ 1
8 个结果
  • 简介:讨论端部受扭矩作用的非圆截面弹性杆平衡形态的混沌现象.混沌的产生来源于抗弯刚度的微幅周期变化.基于Kirchhoff动力学比拟理论列写弹性杆的平衡方程.应用Melnikov方法的解析预测以及Poincaré截面和相轨迹的数值计算证明弹性杆具有Smale马蹄意义下的混沌形态.给出混沌性态与规则性态所对应弹性杆几何形状的对照.

  • 标签: 混沌形态 弹性细杆 解析方法 数值计算
  • 简介:研究松弛状态下的非圆截面弹性螺旋杆,即带有原始曲率和挠率的非圆截面弹性杆的平衡稳定性问题.基于Kirchhoff动力学比拟,建立用欧拉角表达的弹性杆动力学方程.忽略线加速度引起的微小惯性力,仅考虑截面转动的动力学效应,使欧拉方程封闭.证明松弛状态下的非圆截面螺旋杆无论在空间域或时域均满足一次近似意义下的Lyapunov稳定性条件.从而为螺旋形态弹性杆存在于自然界中的广泛性和稳定性作出理论解释.提示负泊松比材料的螺旋杆可能不稳定.

  • 标签: 弹性细杆 Kirchhoff动力学比拟 LYAPUNOV稳定性
  • 简介:伸出织物表面的短、粗纤维末梢是产生贴身纺织品针刺感的主要原因,本质是纤维末梢刺扎并诱发皮肤伤害性机械刺激感受器.通常基于固定-铰接约束条件下弹性压杆轴向压缩稳定性理论,计算纤维末梢的临界压力判断这种感受器的诱发可能性.然而,这种方法忽略了织物握持纤维末梢的强度、纤维末梢接触皮肤的滑动阻力及其柔韧性特征.本文以伸出织物表面的直立纤维末梢为对象,假设其织物握持端为线弹性转动约束、另一端受皮肤的接触反作用力和滑动阻力作用,建立纤维末梢刺扎人体皮肤的弯曲变形力学模型.通过参数模拟,本文比较分析了纤维末梢在弹性-支撑约束和固定-铰接约束条件下的弯曲变形行为.研究发现,纤维末梢在弹性-支撑约束条件下的弯曲力学行为才能解释其刺扎皮肤产生的大多数力学现象及针刺感现象.

  • 标签: 皮肤 纤维 刺扎 弯曲 非线性力学
  • 简介:针对RockingBlock中的线碰撞问题,首先采用离散思想将线碰撞问题离散为多点碰撞系统,而后基于LZB方法对所建多点碰撞系统进行动力学建模.仿真结果表明随着离散点数的增加,基于LZB方法的多点碰撞模型能够很好地刻画RockingBlock中的相关线碰撞问题,且精度与离散程度紧密相关.

  • 标签: 线碰撞 多点碰撞 非光滑动力学 ROCKING Block
  • 简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.

  • 标签: 参数化建模 多目标优化 悬挂系统 遗传算法
  • 简介:选取了三个反映同步程度的指标平均向量场、同步因子和放电概率,数值模拟研究了网络噪声和振子数量对同步行为的影响.随着噪声强度的增大,三个指标都出现了先增加再降低的现象,即发生了相干共振.在不同的耦合强度和噪声强度下,三个同步指标随着振子数量的增加都呈现出了降低的趋势,表明了网络同步行为的减弱.研究结果对如何利用噪声和如何实现网络同步提供了理论参考.

  • 标签: 神经元网络 同步 相干共振 噪声 振子数量
  • 简介:(w,z)参数是一种新的姿态表示方法,它通过两次垂直的旋转来表示卫星姿态,和描述的运动方程相互解耦,可以分别进行控制,有其独特的优点.本文首先推导了(w,z)参数并给出了运动模型,然后针对非对称微卫星的欠驱动姿态再定位控制,采用微分平滑的方法设计了可行的再定位运动轨迹,给出了相应的跟踪控制律,并以PWM(脉宽调制)喷气系统进行仿真,验证了本文方法的有效性.

  • 标签: (w z)参数化 欠驱动 PWM喷气 微分平滑 再定位控制