简介:本文尝试将Nash谈判解应用到金融领域中,从对策论的角度解释和探讨了互换的源泉、机制和定价模型,提出互换过程即为一个求解Nash谈判解的过程,在不考虑风险和考虑风险的情况下,分别求出谈判双方的收益比。
简介:通常供应链中供应商选优问题为多指标决策问题,本文将此问题视为指派问题.指派问题中的关键是确定"效率"矩阵,本文充分利用供应商单排序结果、评价指标权重以及供应商指标评价值构造了"效率"矩阵,建立了供应商综合选优指派问题模型.案例试算表明该方法合理、有效,为多指标方案决策提供了又一种可行的决策方法.
简介:提出了求解线性规划问题的一种新方法--基解算法.它是一个不需引入人工变量,不必预先求出一个可行基的直接求解算法.
简介:利用线性规划单纯形表对线性规划原问题存在无穷多最优解和对偶问题存在无穷多最优解的情况进行了讨论,并分析了对偶问题存在无穷多最优解情况下的影子价格的方向性,最后以实例说明了各种情况,对初学者加深理解及决策者决策参考有一定帮助。
简介:本文构造了一些线性规划问题来探讨多重最优解的判别准则;补充了现行文献中关于多重最优解判别准则描述的不足,并指出多重最优解判别准则在出现退化解时可能失效的例外情况.
简介:区间数线性规划可用于处理含有离散区间数的不确定性优化问题。针对已有算法所求区间解可能包含非可行解的缺陷,基于可能度概念提出了区间数线性规划的有效解、弱有效解、最优解及其解域的定义,给出了改进解法,所得区间解为以上解域的子集。以一个数值模型为例求解,将运算结果与已有算法所得区间解作了对比,说明了改进解法的有效性。
简介:本文对文献[1]提出的"求解线性规划的快速换基迭代法"从多阶段决策的观点阐述并举证了从极优基未必能快速到达最优基的论断.旨在说明用此方法求解一般线性规划问题时不一定能实现快速换基迭代的概念.
简介:本文考虑线性约束条件下连续与半可微的伪线性(既伪凸又伪凹)函数的优化问题.使用伪线性函数的性质推导了解集的一般表达式,并基于用右侧导数代替既约梯度的广义凸单纯形法,给出了唯一解的条件以及当唯一性条件不满足时求出解集的计算步骤,最后给出了算例。
简介:本文通过增加一个特殊约束,贯彻对偶单纯形法检验数全非正的思想,迭代求优;然后再去掉该约束,结果却可得到一个基可行解。上述过程经简化处理后,增减约束可以不必出现,它仅使单纯形表矩阵增加几次初等变换而已,足见其方法之简捷及有效性。
简介:装卸工问题是从现代物流技术中提出的一个实际问题,这个问题的雏形早在上个世纪60年代中国科学院数学研究所就提出和研究过.现代物流业的迅速发展,促成和推动装卸工问题的提出和研究.装卸工问题是一个新的NP困难的组合优化问题,本文研究限制情形下的装卸工问题,并证明是拟多项式时间可解的.
融资互换的Nash谈判解
指派问题在供应商选优决策中的应用
线性规划的基解算法
线性规划无穷多最优解的讨论
线性规划多重最优解判别准则刍议
区间数线性规划及其区间解的研究
从极优基未必能迅达最优基:兼与文献[1]作者商榷
一类半可微优化问题的解集
线性规划求基可行解的一种方法
现代物流技术中装卸工问题的拟多项式时间可解情况