学科分类
/ 5
85 个结果
  • 简介:TNNS(真航向导航系统)由MS860接收机、INS及处理数据的PC/104架构的嵌入式工控机构成.针对TNNS推导了INS(惯性导航系统)的误差模型,提出了适合于TNNS的降阶扩展卡尔曼滤波算法组合GPS和INS。系统在东海作了三次海试,软件及滤波算法平台由C/C++编制.海上试验表明,组合滤波,INS的位置误差由i00m降低到40m以下;进行最优化滤波的航向误差α由原来的0.105°减小为0.034°,纵横摇的误差也大幅减小.整个海试结果表明,在TNNS组合GPS/INS采用的降阶扩展卡尔曼滤波算法,大幅提高了系统精度和可靠性.

  • 标签: GPS/INS 组合导航系统 误差模型 降阶扩展卡尔曼滤波
  • 简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。

  • 标签: Cubature卡尔曼滤波 多重渐消滤波 鲁棒滤波 奇异值分解 组合导航
  • 简介:本文依据卡尔曼滤波器在使用最佳增益时,其余差序列互不相关的性质,开发了一种新的渐消滤波算法。该算法根据对象输出,在线自适应地调整遗忘因子,从而使滤波器在对象模型存在误差或对象受到外扰时,仍收敛并保持最佳性。该算法应用于陀螺随机常值漂移的标定,取得较好效果

  • 标签: 卡尔曼滤波 自适应滤波 捷联惯性系统 陀螺漂移
  • 简介:多路径误差是北斗导航定位系统高精度动态监测的主要误差源。针对北斗导航定位系统多路径误差的特性,结合广义特征值盲源分离方法的优势,提出一种基于参考信号的广义特征值盲源分离算法来削弱多路径效应的影响。首先将前一天的原始坐标残差序列通过奇异谱分析方法进行去噪,其结果作为初始参考信号;然后将当天的原始坐标残差序列进行经验模式分解方法分解,分解得到的IMF分量作为虚拟观测数据,利用广义特征值盲源分离算法获取当天多路径误差信号;最后,利用仿真数据和连续10天的实际观测数据进行试验分析,结果表明利用该方法建立的多路径误差改正模型能有效地了削弱多路径的影响,北、东、天三个方向精度分别提高了78.8%、35.3%、90.1%。提出的模型在一定程度上解决了固定多路径模型随着时间推移重复性减小且有效性降低的问题。

  • 标签: 经验模式分解 广义特征值 盲源分离 多路径误差 北斗定位系统 动态监测
  • 简介:中国惯性技术学会技术咨询部和学术交流部于2004年9月16日至18日在山东省泰安市举办了“2004年国惯性技术学会科技工作者研讨会”。出席会议的有丁衡高理事长、赵凯嘉秘书长、学会各有关机构领导及17个单位的专家学者共25人,会议投稿20余篇,会上发表19篇。会议以2020年惯

  • 标签: 惯性技术 中国 关机