学科分类
/ 3
49 个结果
  • 简介:从考虑损伤的粘弹性材料的一种卷积型本构关系出发,建立了在有限变形下损伤粘弹性Timoshenko的控制方程.利用Galerkin方法对该组方程进行简化,得到一组非线性积分-常微分方程.然后应用非线性动力学数值分析方法,如相平面图,Poincare截面分析了载荷参数对非线性损伤粘弹性Timoshenko动力学性能的影响.特别考察了损伤对粘弹性的动力学行为的影响.

  • 标签: 损伤粘弹性固体 Timosenko梁 几何非线性 混沌 非线性动力学
  • 简介:为研究斜拉桥中索与、索与索之间的耦合振动问题,建立了斜拉桥的单-多索力学模型.考虑索的初始垂度引起的几何非线性因素的影响,将多索模型分段处理,基于索、经典的面内振动的微分方程,通过索、连接处的动态平衡条件,建立多索模型面内振动理论.以双索为例,应用分离变量法,结合边界条件,求解双索斜拉模型平面内自由振动的特征值问题.同时,建立双索的有限元模型,有限元所得结果与本文理论研究吻合良好.最后对CFRP索模型的各项相关重要参数进行分析,并将本文理论与课题组前期成果进行对比分析.研究表明,CFRP索能极大改善双索模型的基本动力学性能.增大拉索轴向刚度能明显提高模型的低阶频率,而弯曲刚度的提高对其高阶频率的提高比较明显.

  • 标签: 多索梁 模态分析 CFRP索 频率 有限元
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了一种对宽翼薄壁T形动力学特性的分析方法.分析中为了准确反应T形翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形动力反应的控制微分方程和自然边界条件,据此对T形的动力反应特性进行了分析,揭示了T形桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法与有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:研究了变速轴向运动黏弹性参激振动受拉力扰动时在主参数共振和组合参数共振范围内的稳定性.轴向运动的黏弹性本构关系引入了物质时间导数.当参激频率接近某一阶固有频率2倍时将发生主参数共振;当参激频率接近某两阶固有频率之和时将发生组合参数共振.运用多尺度法,直接求解轴向运动的控制方程,导出了稳定性边界方程.最后,通过数值算例给出了变速轴向运动的黏阻尼和干扰拉力对失稳区域的影响结果.

  • 标签: 轴向变速梁 黏弹性 拉力扰动 参数共振 稳定性
  • 简介:采用Timoshenko修正理论研究了有梯度界面层双材料的振动问题,利用静力方程确定了有梯度界面层双材料的中性轴位置,在此基础上应用Timoshenko修正理论建立了有梯度界面层双材料的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层双材料的振动影响,并用有限元法验证了Timoshenko修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层双材料振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动
  • 简介:用微分求积法分析了轴向移动粘弹性非平面非线性振动的动力学行为.轴向移动粘弹性非平面非线性振动的数学模型是一非常复杂的非线性偏微分方程组.首先用微分求积法对其控制方程组进行空间离散,得到非线性常微分方程组,然后求解常微分方程组得到数值结果.在数值结果的基础上结合非线性动力学理论,利用分叉图、时间历程图、相图对其非线性动力学特性进行了分析.

  • 标签: 微分求积法 轴向移动粘弹性梁 非平面振动 混沌 分叉
  • 简介:用微分求积数值方法求解了轴向加速粘弹性的横向振动控制方程,其方程是一复杂的非线性偏微分方程.并在数值结果的基础上利用分叉图分析了轴向定常加速度以及轴向加速度变化幅值对轴向加速粘弹性的非线性动力学行为的影响.

  • 标签: 非线性偏微分方程 数值解 混沌 分叉 微分求积法