简介:摘要:视觉和红外相机具有互补的属性,将它们一起使用可以提高人脸识别的性能。这项研究提出了一种新的有效人脸识别方法,融合了来自两个领域的互补信息。第一步,通过基于区域分割和 PCNN的新图像融合方法获得融合图像。第二步,根据熵的贡献,通过 ECA和 2DECA提取融合图像的特征。该方法已在 OTCBVS数据库上进行了测试,实验结果的比较表明,该方法在人脸识别中表现良好。
简介:摘要机器学习已经广泛的应用于众多疾病的辅助诊断中,分类集成学习通过构建多个学习器来完成特定学习任务,再通过特定的策略将他们结合起来。阿尔茨海默症由于其病因和疾病发展经历了较为漫长的过程。本研究使用对早期、晚期轻度认知障碍、阿尔茨海默症及正常老年人进行分组特征提取。优化使用可以提高分辨率的PCA-FLDA集成分类器对前期提取的数据进行分类集成,最大限度的降低了前期特征提取中不同分类方式对空间划分的依赖性。
特征水平图像融合的多模态人脸识别新方法
基于多模态分类集成器的阿尔茨海默症早期诊断系统的研究