简介:摘要随着电力企业的发展和信息技术的进步,目前大数据在电力企业的决策和发展中起着至关重要的作用,并不是说这些数据本身具有指导电力企业决策和发展的作用,而是需要通过采用一定的数据挖掘技术,从电力企业每天海量的数据信息中挖掘出潜在的、对企业有价值的信息,进而为企业的发展提供指导和帮助。本文就大数据时代下,数据挖掘技术在电力企业中的应用进行简单的探讨,旨在为数据挖掘技术的应用提供帮助。
简介:摘要经过近年的发展,数据挖掘已经形成了很成熟的理论,应用也渗透到各个领域。在最近多年来,随着计算机技术和网络技术的飞速发展,人们面临的数据量呈现指数增长,传统数据采集的方法和技术面临巨大困难,如何将来自于大量原始数据的重要内容从中挖掘出来,已经成为一个亟待解决的重要课题。在电力行业,随着电力业务体系应用智能化、自动化技术的深入和普及,电力数据的数据分析、测试、仿真等应用需求与时俱增,数据挖掘技术与大数据分析的结合已成为电力系统高效发展、稳定运行的有效智能保障。
简介:摘要:随着电网终端采集装置的大范围安装与现场应用,越来越多的电网业务应用具备了数据实时采集的能力。为了充分发挥实时采集的电网数据价值,要求技术发展能够适应大规模电网数据流实时处理的新要求。然而,当前电力大数据的处理方式仍以传统的数据批处理为主,而大规模电网数据流在实时性、无序性、无限性、易失性、突发性等方面均呈现出了诸多新特征,使得基于“先存储后处理”设计理念的数据批量处理在可伸缩性、系统容错、状态一致性、负载均衡、数据吞吐量等方面面临着前所未有的新的挑战。类似于MapReduce的离线处理并不能很好地解决问题,而流计算可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息。
简介:摘要为解决用户在开展节电工作时面临的用电数据不透明、缺少节电指导依据等问题,提出大数据背景下基于数据挖掘的用户节电通用分析方法,并在大数据平台上予以并行化实现,设计了直观的可视化展示形式。首先依据用户用电特性通过高维聚类实现了用电群体细分,然后融合电力、气象、经济等多维度数据开展节电分析,基于用户能效综合评估确定群体内节电标杆并量化用户节电潜力,接着通过多源数据关联分析获得用户节电策略,最后,通过SparkR在大数据平台上实现了节电算法业务的并行化,基于JavaWebMVC框架实现了分析结果的可视化展示。实际应用效果表明,所提出的节电大数据分析方法,能有效关联多源数据,实现对海量用户数据的高效分析。