简介:对一类具有转向点的Voltcrra型积分微分程奇摄动非线性边值问题证明了解扮存在性并给出了解的一致有效渐近估计。
简介:研究带有高阶转向点的二阶非线性微分方程的边值问题{εy〃=f(t)y12+g(t,y)y(a,ε)=A,y(b,ε)=B的奇异摄动现象.在一定的条件下,得到了摄动解关于退化解的渐近性质及误差估计.
简介:本文讨论如下边值问题:Lεy=ε^5y^(5)+ε^2a(x)y^(4)+εb(x)y^″′+c(x)y″+f(z,y)=0y′(-1,ε)=A(ε),y″(-1,ε)=B(ε),y″′(-1,ε)=C(ε),y′(0,ε)=D(ε),y(0,ε)=B(ε)x=0是转向点(c(0)=0),而在x=-1处出现多重边界现象,对不同层次采用不同的伸长变量。构造具有不同级的边界层校正项,得到关于解的一致有效的渐近展开式和有关的余项估计。
具有转向点的积分微分方程奇摄动非线性边值问题
一类具有高阶转向点的二次问题的奇摄动
具有转向点的一类奇摄动边值问题解的多重边界层现象