学科分类
/ 3
50 个结果
  • 简介:运用C0一半群理论研究一类人与出租车构成的排队模型主算子的谱特征.首先证明0是对应于该排队模型的主算子的几何重数为1的特征值,其次证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,然后证明0是该主算子共轭算子的特征值.

  • 标签: 几何重数 共轭算子 豫解集
  • 简介:本文证明了当(a,b)不属于{(1,8),(2,4),(3,6),(4,4),(2s^2-s,2s^2+s))时,L^m(Ka,b)以谱为特征,其中a≤b,s≥2.

  • 标签: 线图 二部半正则图 邻接矩阵
  • 简介:本文讨论形如AnX—ACnX的方程,其中An是一个对称三对角矩阵,Cn是一个对角矩阵.对矩阵An进行3×3分块,给定An的一个非顺序主子阵Ar+1,r+s,给定Cn和四个向量X1=(x1,…,xr),X3=(xr+s+1,…+,xn)Y1=(y1,…,y1),Y3=(yr+s+1,…,yn)'和两个不同实数A,P,构造一个对称三对角矩阵A。和两个向量X2=(Xr+1,…,Xr+x)',Y2=(yr+1,…,yr+s)’,满足AnX=λCnX和AnY=μCnY,其中X=(X1,X2,X3,Y=(Y1,Y2,Y3)本文给出问题有解的条件,解的表达式和相应算法,并给出数值算例验证算法的有效性.

  • 标签: 对称三对角矩阵对角矩阵 广义特征值反问题 非顺序主子阵 缺损广义特征对
  • 简介:在时间尺度上,通过使用线性动力方程的指数二分法、不动点理论和微积分理论,研究带有泄漏项的中立型时滞细胞神经网络模型,获得了一些使其概周期解存在和全局指数稳定的充分条件,并将以前的结论在时间尺度上做了扩展.

  • 标签: 时间尺度 细胞神经网络 概周期解 指数稳定 中立型
  • 简介:设G是一个阶数大于等于4的简单连通图.代4(G)和d4(G)分别表示G的第四大无符号拉普拉斯特征值和第四大度.本文证明了K4(G)≥d4(G)一2.

  • 标签: 无符号拉普拉斯特征值 下界
  • 简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.

  • 标签: /M/1重试排队模型 特征值 几何重数