简介:自由立体显示中的视频图像在合成过程中存在速度要求高,图像处理数据量大等特点,在显示过程中,一旦用户偏离有效观看视区则无法看到正确的立体图像,到目前为止这些问题仍然存在,并阻碍着立体显示行业的发展。针对这种情况,提出了一种结合人眼跟踪算法的立体视频合成系统。通过判断人眼在屏幕前的位置,实时调整立体图像融合算法,使人眼始终能看到正确的立体图像对。由于该系统对跟踪的实时性和精确度要求较高,之前已有的算法很难同时在这两方面表现出色,因此提出了一种改进的人眼跟踪算法。该算法核心是基于ASM模型的人脸检测,并充分考虑了现场噪声和人体姿态频繁调整的特点,对ASM模型建立时空缓冲模型,处理结果直接映射到实际光栅空间分布模型中。根据当前ASM缓冲模型和光栅空间分布对应的映射点,对显示的图像进行相应的立体合成处理。这种自动跟踪人眼位置的立体视频显示方法跟踪速度快,位置计算精确,有效地扩大了立体视图区域。实验结果表明,该方法使观看者可以自由移动,在适当的范围内都可以看到清晰的立体影像,同时视频合成与播放的速度流畅,大幅提高了用户观看的舒适感。
简介:场景锁定技术是视频跟踪领域的一个关键技术,需要对图像的全局运动进行估计,常用的运动估计算法由于计算量大、对噪声敏感等因素很难得到实际应用。为了减少运动估计的计算量,提高全局运动估计的精度,提出了一种基于Harris角点全局运动估计的场景锁定方法。将图像分成4×4的16个块,选取每个块中响应值最大的角点,以参考图像角点周围矩形块与待匹配图像进行匹配,然后利用RANSAC算法对角点进行一致性检测,利用最小二乘法解算全局运动参数,最后计算图像之间的累积运动。实验结果表明,该算法运动估计精度高,稳定性好,能较好地实现场景锁定。