简介:针对新型作战体系下以装甲车辆为主的地面目标的被动声识别问题,为实现不同车型在不同工况下的声识别,以常见的3种坦克和4种履带式装甲车为识别对象,提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)和人工蜂群(ArtificialBeeColony,ABC)算法优化的支持向量机(SupportVectorMachine,SVM)相结合的装甲车辆声识别模型。首先,采集不同工况下的车辆噪声信号并进行频谱分析,证明了VMD分解的可行性;其次,对样本信号进行VMD分解,得到不同尺度的本征模态函数(IntrinsicModeFunction,IMF)并进行多尺度模糊熵(Multi-scaleFuzzyEntropy,MFE)的计算,得到多尺度模糊熵特征(VMD-MFE);然后,利用优化算法对SVM进行优化,得到最优参数优化的分类器模型;最后,对噪声信号进行特征提取和分类实验。结果表明:VMD的分解效果优于经验模态分解(EmpiricalMadeDecomposition,EMD)和集合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD);与引力搜索算法(GravitationalSearchAlgorithm,GSA)和布谷鸟搜索(CuckooSearch,CS)算法相比,ABC算法得到的优化模型ABC-SVM具有更高的识别率,可达94.14%以上。
简介:为进一步提高弹道导弹目标多传感器综合识别正确率,提出了一种基于二维主成分分析(Two-DimensionalPrincipalComponentAnalysis,2DPCA)的多传感器特征级综合识别方法。该方法将多个传感器的特征集经标准化后组合成二维特征矩阵,引入图像压缩技术中的2DPCA方法进行特征提取,然后将其用于弹道导弹目标特征级融合识别。以3部雷达部署下弹头目标的雷达散射截面积(RadarCrossSection,RCS)特征融合为例进行仿真验证,结果表明:相比于传统的主成分分析(PrincipalComponentAnalysis,PCA),2DPCA的识别率更高,计算复杂度更低,为弹道导弹目标识别提供了一种新的思路。
简介:办公建筑内火灾荷载的分布情况,影响着火灾增长速率、火灾最大热释放速率及火灾持续时间等主要参数,为此提出基于火灾荷载的火灾场景设计的新方法。以某行政办公室为例进行研究,该建筑火灾荷载密度为479.7MJ·kg~(-1),以此为基础确定火灾增长系数为0.07993kW·s~(-2),火灾最大热释放速率为4.62MW,火灾持续时间为0.133h,进而设计火灾场景进行模拟。模拟结果表明:室内最高温度、室内稳定燃烧时温度、轰燃时间和火灾持续时间的预测值与试验结果的相对误差分别为3.6%,4.3%,12.8%,8.6%,说明该方法能有效预测办公建筑火灾危险性。