简介:本文利用等价方程组,友矩阵与Jordan标准型,研究了n阶常系数线性非齐次常微分方程P(D)x=acose^t+bsine^t其中P(D)=D^n+a1D^n-1+…+an,D=1/dt,a1,a2,…a,a,b为任意实常数,在友矩阵具有n个不同的特征根的条件下,给出了求上述方程的特解的方法,最后给出一个详细的实例。
简介:研究一类二维无界区域中的等热双极不可压粘性非牛顿流体力学方程组,通过证明相应的解半群的紧性,得到整体吸引子的存在性.
简介:Inthispaper,weinvestigatethecomplexoscillationofthedifferentialequationf''+B1f'+B0f=F1whtereB0,B1,F≠0areordermeromorphicfunctionshavingonlyfinitelymanypolesandtheorderofB1islargerthanthatofB0.Weobtainsomepreciseestimatesoftheorderofgrowthandoftheexponentofconvergenceofthezero-sequenceofsolutionsforthisequation.
简介:运用Hadmard反函数定理讨论了一类满足渐近非一致性条件的常微分方程组解的存在唯一性,推广了已有结果.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:目的:基于支持向量机回归(SVR)模型在非线时间序列的预测能力及经验模态分解(EMD)方法在处理非线性非平稳性的优势,提出一种复合自回归经验模态分解支持向量机回归(AR-EMDSVR)模型,提高非线性非平稳船舶运动极短期预报精度。创新点:1.研究非线性非平稳船舶运动的极短期预报问题,提出一种复合的预报方法;2.基于不同层次的预报模型和模型试验数据,分析非线性非平稳性对极短期预报精度的影响。方法:1.在SVR模型中引入基于自回归(AR)预报端点延拓的EMD方法,形成复合的AR-EMDSVR预报模型;2.基于集装箱船模水池试验运动数据将AR-EMD-SVR模型与AR、SVR和EMD-AR三种模型进行比较,分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。结论:1.AR-EMD方法能够有效的克服非平稳对极短期预报模型(AR和SVR)在精度上所带来的不良影响;2.基于船模试验数据的预报结果表明:相较于AR、SVR和EMD-AR三种预报模型,基于AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。
简介:当修复率为常数时通过研究具有带临界和非临界故障的可修k/N:G冗余表决系统研究中出现的投影算子的表达式得到该系统的时间依赖解指数收敛于该系统的稳态解.