基于数据挖掘的电信故障分类及回归预测

(整期优先)网络出版时间:2012-06-16
/ 1
基于数据挖掘技术,针对电信故障海量数据特点,合理选择属性值和标签值,运用交叉验证、网格划分、遗传算法和粒子群算法进行参数寻优,运用支持向量机SVM理论,建立电信故障分类模型和预测模型。通过仿真分析,并且与电信故障实际数据对比,表明该分类模型和预测模型的精度高,误差小,为今后控制电信故障,改善网络运行质量提供理论依据和数据支持。