Thepronunciationvariabilityisanimportantissuethatmustbefacedwithwhendevelopingpracticalautomaticspontaneousspeechrecognitionsystems.Inthispaper,thefactorsthatmayaffecttherecognitionperformanceareanalyzed,inculdingthosespecifictotheChineselanguage.BystudyintheINITIAL/FINAL(IF)characteristicsofChineselanguageanddevelopingtheBayesianequation,theconceptsofgeneralizedINITIAL/FINAL(GIF)andgeneralizedsyllable(GS),theGIFmodelingandtheIF-GIFmodeling,aswellasthecontext-dependentpronunciationweighting,areproposedbasedonawellphoneticallytranscribedseeddatabase.Byusingthesemethods,theChinesesylableerrorrate(SER)isreducedby6.3%and4.2%comparedwiththeGIFmodelingandIFmodelingrespectivelywhenthelanguagemodel,suchassyllableorwordN-gram,isnotused.Theeffectivenessofthesemethodsisalsoprovedwhenmoredatawithoutthephonetictranscriptionareusedtorefinetheacousticmodelusingtheproposediterativeforced-alignmentbasedtranscribing(IFABT)method,achievinga5.7%SERreduction.