SupposethatwewanttoapproximatefC[0,1]bypolynomialsinPn,usingonlyitsvaluesonXn={i/n,0≤i≤n}.ThiscanbedonebytheLagrangeinterpolantLnfortheclassicalBernsteinpolynomialBnf.But,whenntendstoinfinity,LnfdoesnotconvergetofingeneralandtheconvergenceofBnftofisveryslow.WedefineafamilyofoperatorsBkn,n≥k,whichareintermediateonesbetweenB(0)n=B1n=BnandBnn=Ln,andwestudysomeoftheirproperties.Inparticular,weproveaVoronovskaja-typetheoremwhichassertsthatBknf-f=0(n-[(k+2)/2)forfsufficientlyregular.Moreover,B(k)nfusesonlyvaluesofBnfanditsderivatiesandcanbecomputedbyDeCasteljauorsubpisionalgorithms.