经典微积分学中的积分第一中值定理是一个很重要的定理,它肯定了在一定条件下积分区间(域)上至少存在一点使等式成立。本文从改进连续函数的介值定理入手,运用达布和、可积准则等证明了积分中值定理在原条件下其结论可加强为在积分区间(域)内至少存在一个内点使等式成立。
新疆教育学院学报
2000年2期