用创新思维培养数学建模意识

(整期优先)网络出版时间:2019-07-17
/ 2

用创新思维培养数学建模意识

吴鸿儒

(福建省安溪第一中学,福建安溪362400)

摘要:提高中学数学教学质量,不仅仅是为了提高学生的数学成绩,更重要的是能使学生学到有用的数学。为此,笔者认为在中学数学教学中构建数学建模意识无疑是我们中学数学教学改革的一个正确的方向。本文结合自己的教学体会,从理论上及实践上阐述:1、构建数学建模意识的基本方法。2、通过建模教学培养学生的创新思维。

关键词:数学建模;数学模型方法;数学建模意识;创新思维

一、引言

材料一:如果我们在高中学生中作一个调查,问其学习数学的目的是什么?可能大部分同学的回答是:为了高考;如果我们在非数学系的在读大学生中作一个调查,问其学习数学的用处是什么?可能大部分同学的回答是:应付考试。

加强中学数学建模教学正是在这种教学现状下提出来的。“无论从教育、科学的观点来看,还是从社会和文化的观点来看,这些方面(数学应用、模型和建模)都已被广泛地认为是决定性的、重要的。”我国普通高中新的数学教学大纲中也明确提出要“切实培养学生解决实际问题的能力”要求“增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进行探索、猜测、判断、证明、运算、检验使问题得到解决。”这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因为我们的数学教学不仅要使学生获得新的知识而且要提高学生的思维能力,要培养学生自觉地运用数学知识去考虑和处理日常生活、生产中所遇到的问题,从而形成良好的思维品质,造就一代具有探索新知识,新方法的创造性思维能力的新人。

二、数学建模与数学建模意识[来源:学科网ZXXK]

著名数学家怀特海曾说:“数学就是对于模式的研究”。

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

具体的讲数学模型方法的操作程序大致上为:

实际问题→分析抽象→建立模型→数学问题

↑↓

检验←实际解←释译←数学解

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。[来源:学+科+网Z+X+X+K]

三、构建数学建模意识的基本途径。

1、为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。北京大学附中张思明老师对此提供了非常典型的事例:他在大街上看到一则广告:“本店承接A1型号影印。”什么是A1型号?在弄清了各种型号的比例关系后,他便把这一材料引入到初中“相似形”部分的教学中。这是一般人所忽略的事,却是数学教师运用数学建模进行教学的良好机会。

2、数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在解几中讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题,而储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

3、注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。例如教了正弦型函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。又如当学生在化学中学到金刚石等物理性质时,可用立几模型来验证它们的键角为109°28′……可见,这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其它学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。

在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。麻省理工大学创新中心提出的培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力。由此,我认为培养学生创造性思维的过程有三点基本要求。第一,对周围的事物要有积极的态度;第二,要敢于提出问题;第三,善于联想,善于理论联系实际。因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。