(国网太原供电公司山西太原030010)
摘要:在电力调度自动化系统中,其数据信息包含了设备信息、电压信息等多种实用信息,对其进行准确查找具有重要意义。文章首先对数据挖掘技术的分类及过程予以说明,然后对数据挖掘技术在电力调度自动化系统中的应用必要性进行分析,之后结合实际,针对电力调度自动化系统中数据挖掘技术的具体应用展开研究。
关键词:电力调度;自动化系统;数据挖掘
1导言
电力数据收集、整理质量直接影响电力调度自动化系统的控制和管理水平,但由于很多价值较高的数据信息往往位于隐藏的数据之中,这就使得传统方法不能较好满足电力调度自动化系统需要,而为了解决这一问题,正是本文就数据挖掘在电力调度自动化系统中应用展开具体研究的原因所在。
2数据挖掘技术的分类及过程
数据挖掘技术可以分为发现驱动的数据挖掘技术和验证驱动的数据挖掘技术这两种类型,前者主要指的是用户利用机器进行学习,可以发现新的假设,在此过程中,需要分析人员进行参与,后者主要指的是用户对之前自身提出的假设,利用一定技术对假设进行验证。数据挖掘的过程可以概括为:逻辑数据库→被选择的数据库→预处理后的数据→被转换的数据→被抽取的数据→被同化的数据。也就是选择、预处理、转换、挖掘、分析与同化,在确定业务对象之后,需要进行数据处理,在数据处理过程中,首先需要搜索和业务对象相关的数据信息,然后选择合适的数据,然后需要对数据做出质量研究,对数据挖掘技术类型进行确认,最后需要对数据予以转化,让其成为一个可以进行算法挖掘的分析模型。
3数据挖掘在电力调度自动化系统中的应用
3.1数据挖掘技术的应用必要性
电力调度自动化系统可以让电力系统运行可靠性与电网系统安全性得到有力保证,在运行过程中,可以让工作人员的工作更为方便化,其主要组成部分包含了前置机、主备用服务器、Web服务器、串口服务器、卫星钟、RTU和物力隔离网关。在电力调度自动化系统中,应用数据挖掘技术的必要性体现在多个方面,首先,数据挖掘技术可以让管理层对实时信息予以切实掌握,可以让管理层获得经营与生产的相关数据信息,可以让数据受到中间人的干扰现象得到有效避免;其次,数据挖掘技术的应用可以让人力成本得到降低,可以让数据信息的提取更为自动化;然后,数据挖掘技术在电力调度自动化系统中的应用可以让数据信息的掌握更具全面性,可以从不同方面定量、定性对其进行掌握,让管理与预测工作得到有力帮助;最后,数据挖掘技术的应用可以辅助分析电网报告工作、制订电网报告工作。
3.2应用方式
神经网络、灰色分析法、关联规则均能够用于电力调度自动化系统的数据挖掘,具体应用如下所示。
(1)神经网络。作为应用较为广泛的一种人工智能研究方法,神经网络早已在我国实现了较为广泛的应用,电力调度自动化系统的数据挖掘也是其应用的重要领域,由于数据自行处理、数据分布存储、高度容错性是神经网络的应用优势所在,这就使得神经网络较为适用于模糊、不完整、不准确数据的处理。在电力调度自动化系统的数据挖掘中,神经网络主要通过关联分析的方式实现数据逻辑处理,具体处理可以分为以下几个方面:a.整合统一基础数据。由于电力调度自动化系统包含的数据具备庞大复杂、种类繁多的特点,因此神经网络的应用需要通过整合统一使相关数据形成结构模型,通过神经网络系统实现数据统一管理。b.实现不同环节电力调度的关联。应用数据挖掘神经网络方法整理不同环节的电流状态和参数,并保证相关数据信息的整合性,即可实现不同环节电力调度的关联。c.分析与决策。结合神经网络整理的整合数据,即可开展分析、决策以及数据共享。
(2)灰色分析法。灰色分析法能够较好分析电力调度过程出现的不完整数据,但不适用于较为庞大的数据是该数据挖掘方法存在的不足。一般情况下,灰色分析法的应用需要深入了解设备数据参数,如用户用电情况预测、母线负荷数据值、电力销售情况预测等,结合分析确定电力调度边界电量,即可提升数据收集的可靠性,电力调度自动化系统的运行也将由此获得较为有力的支持。
(3)关联规则。作为数据挖掘的重要分支,关联规则能够通过发觉大量数据项集之间的有趣关联和相互联系实现信息的高质量分析,刚刚提到的神经网络严格意义上也属于关联规则范畴,不过本文关于关联规则的研究主要围绕周期性关联规则挖掘算法展开。周期性关联规则挖掘算法具备扫描数据库次数较少、避免扫描数据库的时间开销、连接程序中相同项目的比较次数较少、数据项集频度统计速度较高等优势,由此实现的周期性数据集挖掘、关联规则挖掘便能够大大降低电力调度自动化系统的事故发生概率。
(4)模糊分析法,模糊分析法主要指的是对聚类已知数列与分析已知数列,进而使得分类的数据更为全面,让分类结果的综合性得到提升。在在电力调度自动化系统中,应用模糊分析法可以让大数据功能得到发挥,可以让客观数据整理需求得到满足。如在我国太原地县级电网备用调度项目的电力调度自动化系统中就采用了模糊层次分析综合方法,该系统提供了备调一体化系统,可以让数据采集和数据交换得到贯通和共线,具有数据通信链路管理以及数据发布的功能。
4数据库管理模块设计
采用微软公司的SQLServer数据库系统,由此数据库管理被分为层次数建模、数据表管理、数据表导出三部分,其中数据表管理包含数据管理、结构管理、删除三方面功能,而数据表导出则包括文本文件、Excel文件、Access文件、Xml文件、其他数据库五部分内容。(4)数据分析功能模块设计。数据分析功能模块由同期数据分析、周期性数据分析、数据预警分析、数据关联分析四部分组成,各部分设计如下所示:a.同期数据分析模块设计。该模块的运行流程主要由负荷数据、网损数据、力率数据、有功总加数据对比组成,分析流程可以概括为:“输入所有对比条件→合法→根据条件生成SQL语句→显示查询结果→打印对比图像”。b.周期性数据分析模块设计。围绕报警周期性、负荷周期性、遥测周期性三方面开展数据挖掘,即可完成该模块设计。c.数据预警分析模块设计。分析流程为:“初始化数据集及参数→输入预警分析参数→合法→分析预测→判断预测类型→有无建议→输出报警类型和建议→输出报警类型”。d.数据关联分析模型设计。采用默认用户手动输入数据集方法,程序流程为:“初始化已有周期性数据集→输入参数→合法?→数据集交叉?→计算Conf、Sup→计算下一对数据集→完成”。
数据挖掘技术主要指的是一种数据库技术与人工智能技术结合的技术,利用一定算法,可以从大量的数据信息中搜索到所需信息。在电力调度自动化控制系统中应用数据挖掘技术具有重要意义,对于电力企业的发展和创新具有推动作用,同时可以让电力企业的经济效益得到提升。
结束语
在电力调度自动化系统中,应用模糊分析法、灰色分析法和神经网络法这些数据挖掘技术,可以让电力调度自动化系统对数据予以有效收集,可以让电力调度工作质量得到提升,让对外供电更为可靠,让电网运行的安全性和稳定性得到提升。
参考文献:
[1]周洋.数据挖掘在电力调度自动化系统中的应用解析[J].科技创新与应用,2017(35):149-150.
[2]刘雅铭.解析电力调度自动化系统中数据挖掘技术应用[J].低碳世界,2017(33):66-67.
[3]刘宾,朱亚奇,陈世雯,吴莎.数据挖掘在电力调度自动化系统中的应用[J].电子技术与软件工程,2017(20):158.